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Abstract

Natural water encroachment is commonly seen in many oil and gas reservoirs. In

fact, over~ there is more water than oil produced from oil reservoirs worldwide. Thus it

is clear that an understanding of reservoir/aquifer interaction can be an important aspect of

reservoir management to optimize recovery of hydrocarbons. Although the mathematics

of these processes are difficult, they are often amenable to analytical solution and

diagnosis. Thus this will be the ultimate goal of a series of reports on this subject.

This first report deals only with aquifer behavior, so it does not address these

important reservoirkuyifer issues. However, it is an important prelude to them, for the

insight gained gives impo~ant clues on how to address reservoirhquifer problems.

In general when looking at aquifer flow, there are two convenient inner boundary

conditions that can be considered; constant pressure or constant flow rate. There are

three outer boundary conditions that are convenient to conside~ infinite, closed and

constant pressure. And there are three geometries that can be solved reasonably easily

linear, radial and spherical. Thus there are a total of eighteen different solutions that can

be analyzed.

The information in this report shows that all of these castx have certain similarities

that allow them to be handled fairly easily and, though the solutions are in the form of

infinite series, the effective results can be put into very simple closed form equations.

Some equation forms are for shorter time results, and others are for longer time results;

but, remarkably, for all practical purposes, the solutions switch immediately from one to

the other. The times at which they switch depend on the sizes of the systems being

considered; and these, too, can be defined by simple equations. These simple equation

forms provide great insight on the nature of the behavior of these systems.

Real field aqtier data are never at constant pressure or constant flow rate. This

fact, however, can be handled easily using the superposition integral. This report also

discusses this idea and its application, and shows how the simpler analytic solutions make

this superposition process considerably easier to perform.
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Introduction

, The recovery fkom many oil reservoirs is tiected by water influx, either from the

perimeters of the oil reservoirs, or from below, or from both. In fact, worldwide, there is

far more water produced from oil reservoirs than oiL Much of this is natural water influx.

It is clear then, that an understanding of the interplay between aquifers and the oil

reservoirs needs to be understood to properly perform oil recovery calculations. I

mentioned bottom water earlier, and it is often important, but the material here will

concentrate on peripheral water influx -- for even that subject can become quite complex

to understand and analyze. Wel have to defer discussion of bottom water for later notes.

Typically, when one looks at discussions of water MUX in r~ervoir engineefig .

texts, the subject is treated as though only the aquifer needs to be looked at. With this

view, the various inner and outer boundary conditions and geometries are addressed, and

solutions on the behavior of the aqtiers are discussed. From

solving these problems are presented, assuming one knows the

pressure history.

these, varioui ways of

inner boundary rate or

This approach k useful academically, for it is relatively easy to do, and it also is

useful to give insight into the nature of aquifer flow. For these reasons it will be discussed

here in some detail. Unfortunately, it is “not” very useful for real reservoir problems, for

typically we cannot defie the inner boundary condition for the oil reservoir/aquifer system

in any meaningful way.

These boundary condition dilemmas arise in two dilXerent ways. One is when

@g to history match past performance of an oil reservoidaquifer system, and from this

match, to tier the reservoir and aquifer properties. The other is to pr~ct the fit~e

behavior of the reservoir/aquifer system under va.rjous assumed operating scenarios. Boti.

of those problems are important from a reservoir engineering and reservoir management

point of view. These should be the ultimate goal of the reservoir engineer. Fortunately,

methods have been devised to solve these problems in an analytic manner. Thus these

problems, though difficult, are amenable to solution as will be shown in kiter notes.

1
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In these notes I will discuss these various problems in the order of their complexity

of solution rather than in the chronological order in which they would be used by a

reservoir engineer. The reason for this is simple. The ideas liom one group of concepts

can thus be built upon for the next group. In this set of notes, I’ll address aquifer flow

solutions. Later notes will address reservoir/aquifer interaction.

Aquifer Flow

The equation we use for aqtier flow is the di.lfusivity equation; the same one we

use in well testing theory for undersaturated oil reservoirs. Also the geometries used are

the same; linear, radial and spherical flow. Although these equations are well known, I’ll

repeat them here for later reference.

Linear Flow

Radial Flow

Spherical Flow

(1)

(2)

(3)

Those who are familiar with well testing useage know that in oil reservoirs,

all the terms; ~, ~, et, and k in the difhsivity term can be a problem in practical

application. In aqtier flow this problem is far simpler, for the only fluid flowing is water,

2



thus both p and ct remain nearly constant. Usually in aqtier flow, the variation of

k/$ with pressure is ignored, for it does not change nearly as much as it does in oil

reservoirs. The effect of k/$ variation was discussed in considerable detail by Samaniego

et al. (1979).

As is done for reservoir systems, Eqs. 1 - 3 are usually changed to

dimensionless parameters. These following equations result for linear flow,

Zm=.?m
ax; atD

where the dimensionless terms used are as follows:

XD=XIL

and

kt
tD =

@jICtL2

(4)

.

(5a)

(5b)

where

L = The length of the linear aquilier

And, as in well testing, the definition of PD depends on the inner boundary conditions

chosen. If a constant rate inner boundary is used,

where

Pi =

A=

MP - Pi)
PD =

qpL

PD isdefined aS,

initial aquifer pressure

cross sectional area of the aquifer

~ a constant pressure inner boundary is used, then the definition for PD is,

PD
_ P–Pi

Pw – Pi

(5C)

(5d)

3
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where pW = inner boundary constant pressure

Note that the subscript, w, is usw-illy used at the inner boundary just as it is in well

testing, even though the inner boundary is not a we~ rather, it is at the original boundary

of the oil reservoidaqtier system.

The dimensionless equation for radial flow is,

I apD = apDa2PD +._— —

ar- rD am &D

where some of the dimensionless terms are,

rD =r/rw

kt
tD =

~~ ctr$

These equations should look familiar to well testing engineers. Note that the term,

commonly used to define the original oil reservoir/aquifer radius. It’s handy,

(6)

(7a)

(7b)

.
rw, s

for it

emphasizes the similarity of the two systems; but it is also confiuing, for one has to be

carefbl to remember which radius is actually being considered in the equation.

The dimensionless pressure for the constant rate inner boundary of a radial system

is,

2dC.h(p – pi)
PD =

w
(7C)

and for the constant pressure inner boundary, it is Eq. 5d again. Note that these, too, are

the same as commonly used in well testing.

Spherical flow is not very common in aqutiers; but it can occur whenever there is

an oil reservoir “bubble” surrounded on all sides and at the bottom by a very large aquifer.

4



So this equation will also be addressed briefly in these notes. The dimensionless equation

is,

a2pD ~ 2 apD = apD—— —
ar~ rD ar~ ikD

(8)

h this case, rD and tD are defined the same as in rad.id flow, Eqs. 7a and 7b.

Dimensionless pressure at constant rate is defined as follows,

(9)

Note the similarity to Eq. 7c. The constant is 47c because of the changed

geometry, and the distance term in the numerator is rW. For the constant pressure inner

boundary, Eq. 5d is again used.

The spherical flow equation can be simplified in an interesting way. Suppose that

we define a new dimensionless variable, bD, as follows,

bD = rDpD

When we do this, Eq. 8 simplifies to,

(lo)

?22=*
ar~ &D

(11)

Thus the spherical flow equation becomes identical in form to the linear equation. This

transformation always can be made for the diffusivity equation, and for its steady state

equivalents, the LaPlace Equation, or Poisson’s Equation. The boundary conditions will

be expressed somewhat differently, as we will see in our later discussion of this geometry.

We turn now to solutions of these equations for various geometries, starting with

the radial geometry, for that is the most commonly used in reservoir engineering

evaluations.

5“
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Radial Geometry

In general for all aquifer geometries there are two convenient inner boundary

conditions that can be used: constant pressure or constant flow rate. If there is a known

pressure or flow rate history, the idea of superposition can be used. This is an effective

procedure, and it will be discussed in some detail Iateq but first, we will discuss the nature

of the various solutions that can arise from these boundary conditions.

There are also reasonable assumptions that can be made for the outer boundary

constant pressure, closed or infinite. Thus there are a total of six possible solutions

available which should be considered in some detail. These will be discussed and grouped

together in a logical manner to show their dtierences in behavior, and the reasons for

these differences.

Constant Rate Inner Boundary

We will look at the results obtained for all thee outer boundary conditions

for the constant rate case, compare them, see how they behave at short and long time, and

write simplified equations for their shofi and long time behavior. To do all this, we will

rely heavily on Chatas’ tables from the Petroleum Engineer series which started in May

1953, of which the important part is duplicated and attached. Chatas’ tables borrowed

heavily from work originally done by Van Everdingen and Hurst (1949), but are more

compact than their work was. Chatas’ nomenclature is different from the nomenclature we

commonly use in petroleum engineering today (as was Van Everdingen and Hurst), so I

will clarify these differences as they arise.

Infinite Aquifer

The fist constant rate solution we will look at is for an inikite aqtier. The

solutions are shown in Table 1 by Chatas. His nomenclature in the table refers to

dimensionless time, and labels it, t. We now use tD. The heading labeled pressure

6



A Prqctkul Treatment af Nonsteady-State

Flow Problems in Reservoir Systemq
jbrf3{Appendix) Prcrcfkal informaf;on k presenfed in the form of takk.s,

cfefinifions, and a cornplefe resume;of the Hursf-van Everdingerrequaffons
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wbers againall, the terms on tbe right t > 0.01 5ee Figs. & 3, and 4 or
band aide of the eqnati~ exoept tbe Table 2.
Iiuid+nfluxtermsq (t) , maybe obtefned ~~dtem with closed exterior
from field &tat, we ffnid.ink terms
WY be ~ed tidy as fcdbxm: t <0.01 Se&q(t) = 2 ~~n
In6nite system . t >0.01 See Figa. S, 6, 7, end 8 or

Table 3
t<0.01 q(t) = 2 I/ru larget q(t) & [(r,/rw) t — 1]/2.

,

7HE PHf?OLEUMENGINEER,August, 7953. . 0-47



.

I?XPLA?UTION

0?

stioLs.

Ao~waofdl&hi
A’DmMmd@/w
s-&JQkm4At16Mefa$a?wa8“ @

c- uma8ddm%n42tdwwkt73f
dM8u2t tam”

q-uwautaai
r=.6tQJhlk81ab dik3id

G-ammrucofaow

.

—. .—

TABLE3. Fiita radial 6y6tem with Cb6ed ederior bo7n2dary—Pres5urecase.

lw/rwd.6 Mh-zo Nh-2.6 ● Iwtwd.o teh-as nftbd.o n/n-4.5 “

DimAm. .Dimacdc41. Dimmdca-IhLlmab Dimdm-~Di&aIb.
tea hid&$e ~ ISz%d. kmid
!imBirJQlutim8i@x

h a7d~ _ ~~;u

t
tiw iunlu k-=

Q(O i Q($) t a(t) t’ 0 t q(t) t q(t) t q(i)
Lo(m)+ 0.276 5.0(103- 0.278 l.qto)~ 0.404 s.qto)+ 0.736 1.03 !.471. 2.470 2.442 2.6 !4.233
6.0 -. 0.304 7.s W 0.245 1.s : 0,304 4.0 “ 0.%S6 L3U 1.761 a.m 2.648. a.o 9.196
yj ; op& p$oj+ 0.404 ~J 0.34S 5.0 “ >;022 1.40 1.640. 9.4o 2,748

0.464 2.6~ 0.6616.0M L442 LOI 2.111
3.6 L637

9.0
.2.60 2.243. 4.0 X644

0:27.6 3k “ o.mr a.o II 0.748 7.0 “ 1:234 I.w 2.372
Lqm2* 0.996 2.76 u 0.562 S.s .

.2.s0 3.264 ‘ :.f .:WJ
0.624 8.0 S L2C3 2.M7 2.427 S.W. 3.170

1.1 U 0,414 2.OO u 0.347 4.0 U 0.397 9.0 W 1.44S 3.2$ 2.674 3.23 3.334 S:s 4:727
1.2. w o.43i 2.23 “ o.ma 4.s w 0.962 HO 1.634 2.40 2.725 3.50 L4m 6.0 4.988
La “ ‘ 0.446 2.6q u 0.678 5.0 * 1.024 1.25 1.791 a.w 2.844 a.7s .a.44a
1.4 ‘~ 0.461 2.76 U 0.7t6 S.6 U 1.0!3 1.347
1.6 U 0.474 S.20 “ 0.7.51 &O W 1.140 1.76

1.947 2.30 2.976 4.00 3.732 ?: ;?:
2.124 3.01 a.ma 4.2S 3.622 7.s 6.6s4

*.G u . ocd~ 2J.,J “ o.,~ C.J “ *.JgJ ~-~

1.7 “ 0.4W3.ao “ o.a17 7.0 _ 1.24B 2S
:3EJ $2J :a# 4.30 4.t48 a.o .6.242

l.a * 0.607 3.76 _ o.64a 7.6 * ram 2.s0
4.76 4.la8 .8.s &ma

z&e a:7.2 +07 s.m 4.223 9.0 6.n6
1.9 a 0.517 4.m U o.a7r a.o *-’ 1.348 a.76 2.272 4.m 3.626 .6.s0 f.m 9.6 6.4.!4
2.0 “ 0.676 4.3S ‘“ 0.305 8.5 “ LLV.6 3.03
2.1 M 0.562 4.20. *R 0.922 9.0”,$ 3.440 8.26

2.684 4s .s.742 . :O&7 .:g ;; 6.621
2.660 4.50 3.630 6.93o

2.2- 0.s41 4.7s u 6.95a 11.6II L486 a.m
!4.3 M 0.646 s.m u 0.863 .1.0

3X44 4.76 S.951 71m 5:163 12 7.234
1.326 %.75 .a.Iio tim 4.OK 7.3+2 6.342 32 7.457

2.4 “ 0.6S4 K.W “ 1.U?8 1.1 1.635 4.02
2.5 “ 0.569 6.w ● 1.070 L2

a,247 6.30 . m2 a.m 5.s04 14 7.64n
1.6?8 4.2S 3.317 6.m 4.278 8.w 6.663 33

2.6 u 0.545 6.50 U 1.108 1.3 1.747 4.20 3.221 6.EO 4.618 ‘&-$
2.8 ~ 0.674 7.a7 - 1.:42 L4 Lall 4.7s s.479 7.m 4.4S. 8$$$13 ;: ~fi
a.o U 0.582 7.s4 & 1.174 LS L870 tim 8.491 i.60 4.749 10 - 6.co6 20 .
2.2 “ 0.228 s.m m l.m 1.6 1.924 6.6o
a.4 e 0.344 9.m “ L253 L7

mm s.m 4.s46. 11
M76 8,00 am 8.s0 .4.222 22

-:g g

2.6 “ 0.506 l.al
k&4

1.S 1.8 2.6U 6.s2
a.a e

. $?l? S.W S&l 13. . 6:6447 26”. 9.o47
Lam 2.0

4.0 “ tz H
2.lM 7.m 8,707 9.60 S.O78 14

Lasa a.?.
6,722 23

2.178 7.50 f~ &m 5.336 IS 6.67S 60 .?%
4.s f’ 0.013 1.8 1.261 2.4 2.241 8.o7 6.243 18
;: : o.a17 1,4 1.402. 2.6 3.234 e.m . p& g

$&22~fy0J
S.ml 17

L422 2.8 2.34010.20 5.286 72.
7:0 “ ;.E H L444 a.o

7:076 42 0:632

8.0 W 0.624 }:
Z.WO n.m Sk 14’ 5.426 an

1.4S 9.4 >= :j.g
7.3SS 46 9.546

Z.947 23 &476 22 7.r72 40 B,aw
1.468 3.a

8:5
S.946 16 -6.666 24

.2:626 m:m
7.332 60 0.612

1.487 4.2 3.646 17 Hal 26 7.an m . 9.622
1.4%6 4.6 2.3s1 lam

2;
3.347 18 6.331 30

.>499, ~;
7.434 60 9.622

S.o .
2.670 azm gag g 6.s44 24 >g g y&
2.ss9 22.60 6.611 86 . .

7:0 2.62324.03 4:roo g
8.o

&621 42
2.61s 6.624 46 tg

40 6.633 50 .
., lkg . iti

$
a.o
a.6

;:{

. ::

?:
7.5
a.o
Hi
9.6

i!
12
13
14

E
18
20
23
24
2s
28.
60
34
3a
43
46
50

%

2
lm .
22U

q($) t
3.29a 6.o
;a&

k;
4:292 7.s
4.499 a,o
4.7oa 8.6
6.074 9.0
5,346

1::;
H!i 30.6
6.w4 11
6.= 32
a.347 la
6.762 ~
6.366

2% f
8.M6
8.24D
21.4XJ :
8.879 22
g.a# 24

26
10:07 31
10.26 25
10.50 30
10.60 m
10.98
1L26 E.
11.46 m
11.61 w
11.71
tL70 :E
11.91 227
11.96 l&
11.m
11.49 Im
22.m x47
la. w

%
220

q(t) t
6.246 9.t17
5.446 9.50
6.724 ;;
6.003
6.272 &

Hz 14
7.047
7.204 $
7.523 17
7.767 26
8.230 19
8.o61
0.066 2

.%
k%

10,19 22 .
10.63
10.36 %.
11.46
11.74’ fi
12.25 .00
42.6.2 60
13,74 70
14.40
;*4J - :

X0 .
@J lm

;;:lg %0

17:$6 .:
17.41
17.46
17.44
17.4a .
17.49
17.49
37.30 .
17.60
17.50

q($)
6.%1
7.227 .

:%

}%

9:741
10.23
10J!4
21.00
lL46
11.23

%$! .
12.92
14.33
26.11
16.39

2E

%E

2:E
ZL62
rt.m
23.47
73.71
33.64
73.92
=.96
24.m

t W
6.961

:! 7.348
7.427

32 8.421
:yi

:.

16 12%
37 10,62
la 11s

11.70
E t2.13

32.46
E 32.74
24 $2
26
30 . ~:g
34

18:41
% 18.47
43 2%24
m 21.42
66 22.45

32.40
~ 24.46

20,%

1% %:
29.31

M 20.U6
MO SO.K

30.91
xi? 31.Ia
240 31.24

al.42
E ax.47
3W 3L49
430 al.30
SW ~ y.m

t d) 3 . q(t)
7.417 9.445

E
3X$ ~.~g

33.22 ‘ 24 14.04
- $;; 14.96

: 33.2s
15:64 16.59
16.26 22 17.28
37,10 24- 18.16
17.22 86 32.91

28.46
%% :
19.ss 2.:
2$4J 44 .33.76 .

21:60 ti .X
33.32 .6J

24:23
Ez
33.s E 2E
24,s9 36 23.11
34.6a ~ ~g
26.36

70 26:29
2:$ 7s 20.44
28.46 30 w;

32.67
~~ % 2:

31:87 18 @J
S2.n ~
34.64 40:66
35.62 y&2 42.7s

44.21
%.% 45.46
22.44 E 48.96
a9.n 280 47.44
38.54 48.84
S4.77 G 46.91
aa..m ~ 40.14
39.44 ;;4.
am.67 420
33.98

3. Rote of $hid l@.uic. The rate of
fluid jnflux haa been presented aa a

621R CMC.” ‘h03 3hC r0t13 Of @-fUk3

function af the ffuid.idtx terms ti,
at the interior boundary’of a radial res
mwoirsgatemia given at time & by *

therefor~ is Bmodi6cation of the “pres- dgehrtic equation
.
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TABLE4. HE&Oredid w&m withdmcd exterior. bmm~-=ti caaa.

xe/rw-L6 mh-z.o mtm-t.~ . . 2drv=3.O rnlm-a.6 mhw-4.o

q(tli-q)-wx-ti) +,,v+[P(8=)—P(qJl“X[ ~,_o= “ ] “ [
fl(h-h-1)-q(th)

e.—0== 1
wherethe &d~iI&tuternw q (t), arcdctarman. ed forthevarfouabonndaryconditiox
in the mannerprcwribed above for the,“praa&rcWM.”

B. hear %ntc=a. Tho cmmapondingexpmsaionsforthe rti ca.sGpres.mrecas
andrate of flnid inilox for fnfhitc Ifnearavatemsare as follows:

L Ra&eCost

-.-P,osoxl+*{Q(~o) _+[Q(8,)-Q(8011 V=z-?

[Q(L%)—Q(%)]V=.+... + [Q(M–Q(&V1 =]

13’(ff,)-w;)] lmi=z+.:.+ CwL-2)– w.)] v &-A-J

.
i.a&e.6@:ra~mny~-.

Iivaiatc$er faolalhrull,z

—

t= n Ib ●f rrsdj-tmant “

~ u XIal-til rlmt
!

#LndamBit7

<-matkmalbd nul

●=8wtate&fuity

~ u waraBe dcmiiy al 011u bet.
ttm-lluk medii-iltw

# m .wra~e ●ufceive llatoa&y

1
Q(I9K)=8H~ Cpo-p(%)l+q(ei) -P(f?,)] ~

*P V% Vwz “

. . +IY(8,)-P(L%)I+... + [l’(e=-l) –P(8.)1
Vfk—c?,” ~ q Ox-l?m }
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TABLE5.FiniwIzadfd ~un with= comstsntpzesmre as atwiorIwmld&y-It2aecas&. .
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Assum@ioras UnderIyhtg Hurst-Van “Everdhtgerr Equations

L The effeets of gravityon the &ridflow are negleeted totalfy.
2. AH flow through reservoir systarriais saatiinedmaeroseepicslly laminar and

thus goverz+l by Der&s law.
3. The sum expressed by Eqqotfon (24) fs really the approximation
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. ‘oMd [Q(tI)] p(t~–;) W} -PO—P(L elf) .* Q(61JP(tx) +J o ~

{
M* Q(&).p(t.)+i~ ~ [Q(t%)—Q(fl.n)]P(tart;) ]

hencq fnerementaof @should be e.hoeemas smell es practicable. .
4. Likawis&the auto aqmaaed by Equation (31) ia the apprexfmatfon

= 277@.@h i<. IY(O,) —P(8,+JI 4~-tJ “

fience, the increments of o shoufd here for ap6ei&d boamderj e0t&iorc3
be else choaon m small as prsetieabk.

S. Aesmnptiona “3” and ‘;4” apply 9. The relation &pressed hy Eqna.
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linear Sy6terna. volume adjustment te~” ~ is en ap.

6. For radial oyatemathe relstiona proxfmationbesed primarily en. the. er-

p (t) = 2 ~~~”and pq(t) = 2 ~%
amnptionthat the maing.head pressure
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change With the symbo~ p(t) is PD (tD) in present day nOIIIenC~tUre, fOr it is *O

dimensionless.

We would like to look at the behavior of the solution in some det~ including a

comparison with the line source solution often used in well testing. A detailed look at

this behavior is shown in Fig. 1 from Muieller and Witherspoon (1965). In this figure,

dimensionless pressure is graphed against the dimensionless timehadius ratio, tD / r’.

This time function looks at pressure history at the inner boundary (rD = 1) as well as

pressure histories at other radial locations. The ~D= 1 curve is the same as Chat.as’ Table

1.

This set of curves contains much useful information. Note that at the inner

boundary, at early times, Chatas’ solution and the line source solution differ quite a bit,

2 20 they are nearly identical.but they approach each other rapidly, so that at a tD / r~ =

closely approach the simple line source solution, so that at r- >20 they are nearly

identical.

In well testing this condition is often reached rapidly in time,’so analysis of the line

source behavior is often usefid. This is generally not true in aqtier flow problems, for the

inner boundary condition is an oil reservoir, not a well. The r; term in the dimensionless

time fiction forces real times to be very great before the curves coincide.

A careful look at Chatas’ solution at r~ = 1 , shows that the PD versus tD

graph has a slope approaching J/2 at very small tD. This result is what we should

expect. The reason is that, at very early time, the pressure has only changed significantly

at points very close to the internal radial boundary. Thus, for practical purposes, we can

treat this early time data as though the flow were linear near the periphery of the circle.

As we’ll discuss later, the equation for early time for all hear problems is,

(12)
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From this equation, at tD =0.1, PD should equal 0.3568. It actually is 0.31U, that is, it

is about 1270 lower than predicted by Eq. 12. At tD =0.01, the earliest time in Fig. L

E($ 12 predicts PD =0.1128 compared to 0.1081 in Chatas’ Table 1. The error is about

4%.

Now let us turn our attention to the longer time values of PD . It is we~ known,

in well testing lore, that at long time in an infinite-acting system, the following simple

semi-logarithmic equation is valid.

PD ‘+D +0.80907) (13)

.

Sincethe mathematicalequations for aqtier flow are identical in form, Eq.13 should also

hold true for the data in Chatas’ Table 1. We will test this assumption for various values

of t~, as seen in the table below. From the results in this table it is clear that, for

practical purposes, the two equations are the same after a dimensionless time ranging from

about 20 to 50, depending on how accurate you expect your pressure diftlerence data to

be. It is also clear, from Fig. 1, that from this time onward, the line source solution and

the tinite radius solution are also nearly identical.

.Compfions of Actual pD with Eq. 13
. .

tD

10

15

20

30

50

70

100

pD (Chatas’ Table 1)

1.6509

1.8294

1.9601

2.1470

2.3884

2.5501

2.7233

15

pD ~. 13

1.5558

1.7586

1.9024

2.1051

2.3605

2.5288

2.7071

% Error

-5.8

-3.9

-2.9

-2.0

-1.2

-0.8

-0.6



Since the early time data approaches Eq. 12, and the late time data approaches Eq.

13, it seems likely that we can use this information to develop simple closed form

approximate equations which will fit the data over the entire time range. I have tested this

ide~ and it works. The short time data were fit to the following equation,

1’2 –0.4326 tD + 0.106 (tD )3’2p~ = 1.1237 (tD) (14)

A comparison of early time results from this equation with the tabulated results in Chatas’

Table 1 is shown in the table below for tD’s ranging from 0.0005 to 2.00.

Early Time Comparisons of Eq. 14 and Chatas’ Table 1

tD ~D (Chatas) pD ~. 14 % Error

0.0250 0.02491 -0.36

0.0005

0.001 0.0352 0.03508 -0.34

0.002 0.0495 - 0.04935 -0.30

0.004 0.0694 0.06932 -0.12

0.007 0.0911 0.09108 -0.02

0.010 0.1081 0.10815 0.05

0.02 0.1503 0.15054 0.16

0.04 0.2077 0.20829 0.28

0.07 0.2680 0.26901 0.38

0.10 0.3144 0.31589 0.47

0.20 0.4241 0.42548 0.33

0.40 0.5645 0.56452 0.00

0.70 0.7024 0.69946 -0.42

1.00 0.8019 0.79710 -0.60

2.00 1.0195 1.02375 0.42

16



Note that all the values are quite close to Chatas’ table over this time range. The

greatest Werence is 0.60%, which is far more accurate than we would expect real

pressure data to be. Note, also, that the first constant in the equation is 1.1237 rather than

2A which is 1.1284. This slight difference comes from the least squares fitting routine I

used, and is not enough difference to be worrisome. Notice also, that the errors change

rapidly from -0.60 % at t~ = 1.00, to + 0.42 % at t~ = 2.00. So the user should not

extend this equation beyond this limit. This will not be a problem, for the long time

match, that Ill show next, extends over this time range.

For the long time match, I used Eq. 13 as a starting point and added an empirical

time fimction which declines as time increases. The equation I end&l up with was as

follows,

[

=; lntD +0.80907+
1.024

PD
(tD +0.40)0”7291 (15)

Equation 15 was found to fit Chatas’ pD(tD) data quite well for times, 0.70 S t~. The

table on page 19 shows the results in detail.

Notice that these two tables overlap in the time range 0.70< t~ S 2.00. Also

notice that the long time data fit Chatas’ Table 1 with good accuracy, with a maximum

error of 0.40%. The amount of error decreases at longer times, as we would expect,

except at tD = 1000 where the error is 0.09%. From a carefi,d look at Chatas’ results it is

clear that this value is slightly in error in his table.

Since the inhite aqtier solution becomes a semi-log straight line after a period of

time, it can be graphed simply. Also this same graph can be used to compare this behavior

with that of other outer boundary conditions. Such a graph is shown in Fig. 2,

page 18, fi-om Aziz and Flock (1963). This graph is retiy remarkable, for it shows that

the lines for a constant pressure outer boundary look much like each other (becoming

horizontal), and the lines for the no flow outer boundary also look similar in the way they.

rise. We’ll discuss these solutions next.
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Late Time Comparisons of Eq. 15 and Chatas’Table 1

tD

0.70

1.00

2.0

4.0
7.0

10.0
20.0

40
70

100
200
400
700

1000

pD (Chatas)

0.7024

0.8019
1.0195

1.2750
1.4997
1.6509

1.9601
2.2824
2.5501
2.7233

, 3.0636

3.4057
3.6842
3.8584

p~ Eq. 15

0.7038

0.8051

1.0216

1.2716

1.4963

1.6487

1.9592

2.2835

2.5518

,2.7249

3.0644

3.4068

3.6844

3.8617

% Error

0.20

0.40

0.21

-0.27

-0.23

-0.13

-0.05

0.05.

0.07

0.06

0.03

0.03

0.01

0.09

.

Constant Pressure Outer Boundary

Consider the cases where the pressure is fixed at the outer boundary, the ones that

become horizontal and constant in Fig. 2, after a period of time. With a little thought, we

shotdd realize that these systems approach the steady state condition after a period of

time, for the flow rate is com”tant, and the outer boundary pressure is fixed. Further, this

constant value is based on Darcy’s Law, and the equation is quite simple, based on the

definitions of the variables.

pD = ~(r~) (16)

We can test this conclusion for a couple of cases in Chatas’ Table 5, which defines

the pressure behavior of this finite system. ‘Note that at late time for rD =10.0 the

pressure value is 2.303, the natural logarithm of 10, and at r~ =100, it is 4.605, as we

predict.

19
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We can think further about these results to generalize their behavior, for we know

how they work at both early and late times fi-om Eqs. 13 and 16. Using these equations

as a guide, we would expect that an equation of the form,

1 [ln (tD / r-)+ 0.80907]p~–hl(r-)=z (17)

willhave the same shape as Eq. 13, and all results would fall exactly on top of each other

at early time, for Eq. 13 has really not been changed. At late time, however, the pressures

are independent of time, so the left-hand side of Eq. 17 should be identically equal to zero

for all radii. Wel check this idea out for certain cases in Chatas’ Table 5, as listed in the

tables below.

Equation 17 Values for r~ = 2.0, 10, 100 and 1,000

TD= 2.0

PD PD ‘h(rD) ‘D tD / r;

0.424 -0.269 0.200 0.0500

0.498 -0.195 0.300 0.0750

0.591 -0.102 0.500 0.4000

0.647 -0.046 0.750 0.1875

0.673 -0.020 1.000 0.2500

0.688 -0.005 1.400 0.3500

0.693 -0.000 3.000 0.7500

rl) = 100

3.859 -0.746 1000 0.1000

4.150 -0.455 1800 0.1800

4.434 -0.171 3500 0.3500

4.552 -0.053 5500 0.5500

4.598 0.007 9000 0.9000

4.605 -0.000 15000 1.5000

rD =10

1.651 -0.652 10.0 0.1000

1.952 -0.351 20.0 0.2000

2.197 -0.106 40.0 0.4000

2.271 -0.032 60.0 0.6000

2.300 -0.003 100.0 1.0000

2.303 -0.000 160.0 1.6000

rn =1000

PD PD ‘ln(rD) ‘D tD/r;

6.161 -0.747 1X105 0.1000

6.605 -0.303 2.5x105 0.2500

6.813 -0.095 4.5X105 0.4500

6.885 -0.023 7.0X105 0.7000

6.904 -0.004 10.OX1O5 1.0000

6.909 -0.000 16.0x105 1.6000

20



The resuhs of these ca.lcrdations are graphed on Fig. 3, page 22, using PD ‘ln(rD )

on the arithmetic coordinate and tD/r~ on the logarithmic coordinate, as suggested by

Eq. 17. It is clear from this figure, that all the tabulated v@es do not fit with each otheu

but it is important to see that they do fit for rD =100 and 1000. The reason, of course, is

that the form of Eq. 17 came horn Eq. 13, which we know from Fig. 1 isnl correct until

after a period of time. This, in turn, means that the system must be large enough that the

outer boundary is not felt before Eq. 13 becomes valid.

Notice, also, that the rD =10 data fit fairly closely to the data at larger radii This

is because at rD =10 the assumptions inherent in Eq. 17 are not unreasonable. Again,

we could have predicted this from looking at the results in Fig. 1 at rD =10.0.

An additional point should be made about these results. It is obvious from Fig. 3

that all the columns of Chatas’ Table 5 were not necessary. The results at rD =100 can

be transposed to any other higher vake of rD using Eq. 17. This is a usefid concept that

can be of great help in understanding how aquifer influx behaves (or any transient flow) at

large r~.

To translate from one vahe of rD to anOther, we use Eq. 17 to conclude that at

another radius, we should look at pressure results at dMering times, as follows,

tD2 = tDl(rD2 / rDl)2 = tDl (rz / q)2 (18)

Also, from Eq. 17, the pressure behavior for the second case (at r~ = ~D2) is rehited at

these times to that of the fist case (r~ = rDl) by,

PD2 = PD1 + h kD2 /rDd (19)

To test this idea out, I’ve fited vahms of PD at various vah!es of tD fiOm

@@s’ Table 5 at rD =100 and 1000, as shown in the table on page 23. Some

comments about this table seem in order. The values of tDl and PD1 in the table come

directly horn Chatas’ Table 5 at rD =100. Equation 18 te~ us that, if rD2 =1000, we

should evaluate PD at dimensionless times 100

in the third column, while the fourth column

21
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Chatas’ Table 5 at rD =1000. The fifth column comes from Eq. 19, which states that

these pressure terms should be the same as in the second column with a simple adjustment

by in (r2/ rl). Note from comparing the last two pressure columns that this statement is

exactly true, so it is clear that Eqs. 18 and 19 can be used to generate any set of pressure

calculations one wishes to use for any large value of rD.

Comparisons of PD values at rD = 100 and 1,000

rD~ = 100” rD2 = 1000 in r2/ rl = 2.303

tDl PD1 tD2 = tDl(r2 / ~)2 PD2 PD1 + 2.303

1.OX103 3.589 1.0 X105 6.161 6.162

2.0 4.200 2.0 ‘ 6.503 6.503

4.0 4.478 4.0 6.781 6.781

6.0 4.565 6.0 6.868 6.868

10.0 4.601 10.0 6.904 6.904

As discussed later in this report, certain outer boundary conditions cause

exponential decline when the data are graphed properly. This idea is discussed in

some detail for the radial system with a closed outer boundary and a constant pressure

inner boundary in the next section of these notes. But it is also true that finite aqtiers,

with constant pressure at the outer boundary, and produced at a constant rate, will exhibit

exponential decline when graphed properly.

To show this concept, I’ve looked at one case in detaiL at rD =10.0 . The

exponential decline equation tells us that, if we were to graph the log of the pressure

difference against time on arithmetic coordinates, we should get a straight line. For this

purpose, the pressure term graphed should be PD (00)– PD (tD) ; and fOr rD =10,

23
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The VdU(3$ Of PD (CO)– PD (t~ ) [2.303 - PD (tD )] are graphed on Semi-10gpaper

against time in Fig. 4 on the next page. Clearly a perfect straight line is found. ,The slight

scatter of a few points off that straight line are an indication of the slight errors in Chatas’

table. Note that the first point on this graph is at tD = 10, and the value of

PD (~D ) [1.6s1] is the same as in Chatas’ Table 1 for the infinite system. Thus, this, and

ExponentM Decline Parameters for Radial System at Constant Rate

With a Constant pressure outer Boundary, rD = 10, PD (00)= h rD = 2.303

tD

_

10

12

14

16

18

20

25

30

35

40

45

50

55

60

65

70

75

80

PD (tD )

1.651

1.730

1.798

1.856

1.907

1.952

2.043

2.111

2.160

2.197

2.224

2.245

2.260

2.271

2.279

2.285

2.290

2.293

2.303- pD(tD)

0.652

0.583

0.505

0.447

0.396

0.351

0.260

0.192

0.143

0.106

0.079

0.058

0.043

0.032

0.024

0.018

0.013

0.010
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all other finite radial systems, can be treated as though it were an infinite system for some

time, and then the exponential decline equation can be used thereafter.

Clearly, systems at other radii will behave in this same way. Thus it would be

possible to derive closed form solutions for the times to switch from infinite acting to

exponential behavior, and to define the slopes and interrupts of these exponential decline

equations, just as will be done later for the constant pressure cases. I’ve not done that

here, for the constant pressure case is the one most commonly used in water influx

calculations. However, if the reader needs to use this idea for constant rate calculations, it

would not be dMicuk to accomplish.

These exercises also make it clear why the curves which become horizontal in Fig.

2 look so much like each other. We will iind that other boundary conditions can also be

put into useful generalized equation forms which provide insight on the nature of the

resulting solutions and graphs.

Closed Outer Boundary

The lines that rise above the semi-log straight line in Fig. 2 are for the closed outer

boundary. They curve on this graph, but if they are plotted on arithmetic paper, we find

that they are straight lines. The reason for this is simple. At late times, with a closed

outer boundary, the entire system approaches pseudo-steady state flow. Wel address this

concept next.

In earlier notes (Brigham, 1988), I wrote about pseudo-steady state flow, and

pointed out that, if we are productig at a constant rate, after a period of time the entire

system is depleting at an equal rate. The resulting equations look a good deal like the

steady state equations, and this is the reason it is called “pseudo-steady state.”

One of the equations h these earlier notes related the difference between the

average pressure and the inner boundary pressure to the reservoir parameters, as

follows,

=J+h)=’$h(r’’r”)-102[2 —~. ?-’2 -—r;
‘e
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To compare this equation to the aquifer flow equation used by Chatas,we n=d pi – Pw

rather ~ – pw . To accomplish this we need to derive an equation for Pi – P . But ~

can be done easily with a simple material balance, as follows,

‘i-’=* (21a)

which, when we insert the definition for tD , simplifies to,

2ZklZ~i-~)= 2tD

(re/rw)2 -1
(21b)

q~

Now we can combine Eqs. 20 and 21b to get a general equation relating Chatas’

pressure drop with pseudo-steady state conditions,

2Zkh~i-p~) =(re/rw)4h(re/rW)_ 3(re /rw)2 -1 + 2tD

[(re/rw)2 -1] 2 4[(re/rW)2 -1] (re/rW)2 -1
(22)

qP

What we wouId like to do is to compare Chatas’ pressures in Table 4, for the

closed outer boundary, with the results one would calculate using various assumptions

about the flow equations. At early times, one would expect that the outer boundary

would not affect the pressure behavior, while at later times we would expect that the

pseudo-steady state assumption would be valid. To test this ide% Ite listed pressure data

from Chatas’ Table 1, (pD)= , and from his Table 4, (pD )C , and from cdculatiom

~hg ~. 22, (pD)P~~, at values of rD =2, 5 and 10 in the first table on page 29.

There are also data available for closed systems with larger rad~ as shown on the

attached table (page 28) by Katz et al. (1968). In that table, the terms labeled, R, we

havecalled r~ . The headings, r = 1 are at rw , and the term, 0, we call PD . I kt

the rD = 100 (R = 100) data in the same way in a table at the bottom of page 29. To do

27
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this at longer times, it was also necessary to calculate (PD )- using Eq. 13, for these data

are not listed in Chatas’ Table 1.

TableofDimensionlessPressureDropD~hibutiomPD(7D,tD), Finite
RadialAqu&erwithClosedExterior BmuIdarY,ConstantTerminal Rate.
FromIL&,et al.(1968).

R=&o
==1 r=2 *=5 rr8 -7-

. Sozl .2206 .00’08 .0000 -T-
1.100 .4632 .0229 .0007 2.5
1.362 .7011 .0967 .0166 ,-
1.654 .9783 .3590 .1 L71 ):
2. lBO 1.500 ● 7371 .5698 25
2.975 2.295 1.531 1.363
4.653 3.882 3.118 2. 9s0 1:.

250

500

R= 10.0
r=l rs2 Z*4 r=7 *=1O
. Sozl . Z204 .0073 .0000 .0000

1.100” . 46s2 .0703 . 001s .0000
1.362 .7010 .1942 .0195 .0021
1.651 . 97S2 .3394 .0928 .0343
z. 005 1.401 . ?663 . .* S7SI .2797
L 604 1.919 )0 320 . BB13 .7787
3.614 2.929 2.290 1.891 3.739

I6:645 5,960 5:321 4.922 40*I9
11.69s 13.010 )0. 373. 9.972 9.$69

R=12. O R=14. O
e t rra ==3 ==6 rxsz Q 1

5
X81 r*S

1.362
r*7 r=14

.3737 ,.0448 ..0002 s 1. 36z .3736 .0195 .0000
10

25
50

100
250
500

1000

T
T

10

35
50

100
250
500

1000

1.6s1 .6133 .1501 . 00s7 10
2.066 .994$ .416Z .1356 25
2.462 1.384 -7826 .4648 . so
3.165 2. 0s7 1.483 I. 163 100
S. 263 4.184 3.581 3.261 Z50
& 760 7.6s1 7.077 6.757 ,500

15.75Z 14.674 14.070 13,750 . 1000

R816
rsl *54 ==a r=16
1. 36Z .1942 .0079 .0000
1.651 .3391 . 05Z1 .0004
Z. 062 ● 7310 .2235 .0281
z. 394 1.039 . 45a5 . 16al
2. azs 1.463 . a6zo .5442
4.00$ 2.641 2.039 1.720
5.964 4.602 4.000 3.661
0. aa6 8.523 7.921 7.60Z

-T
7

10

25
50

100
250
500

. 1000

1.651 .6133 . oa97 .0019
2,062 .9906 .3048 .0633
2.411 1.3Z9 . sec9 .2805
2.939 1.855 ]. 106 . 786B
4. 47s 3.394 z. 645 z 325
?. 04?. s. 9s8 % 209 4. a89

12.170 11.337 10.337 10.017

.
zt=:a. o

r-l Z-4 r=9 rxll!
:.362 . 194Z .0029 .0000
1.6s1 .3391 . 0Z92 :0001
L 062 .7310 .1633 .011s
2.390 1.033 .3638 .0991
& 768 a. 40Z .6935 . 379a
3.705 2. 3s7 1.625 1.305
5.353 3. Ms 3.173
,8.349

2.853
6.981 6.,289 5.949

R.ZO
Q

R=SO
I r-l *=4 r=lo rain o I *=S *S6 r=zo Z=50

10 i 1.651 .3890 . o15a .0000 25 2.06Z .4063 ..0033 .0000
25
50

100
250
500

1000
2300

2.062 .7309 . 11s2 .0047 50
2.3a9 1.031 .3.911 .0572 100
2.742 1.373 .s710 .2654 500
3.513 2.142 1.32a 1.009 1000
4.766 3.395 30581 & 263 2500
7.272 5.901 5.018 & 769 5000

14.791 13.420 l& 607 13.288

2.388 .6691 .0260 .0000
2.723 .9687 .1124 .0003
3.5Z2 1,738 . 6Z63 . 169z
3.963 z. 178 1.047 . S5Z6
5.166 3.330 Z.249 1.752
7.167 5.381 4.249 3.753

R * 100
Q r-l ?s3 rs6 r810 razo ?=50
100 & 7ZS 1.632 . 96a9

x ■ 100
. 5Z94 . 11Z6

Z50
. Oooz

3.173 z. 077 1.396
.0000

● 9157 .3539
500 3.516

.0128 .0000
2.419 1.732 1.237 .6133

1000
.0738

3.861 2.763 2.073 1.570
.Oolz

Z500
.9128 .2173 .0271

4.335 3.237 2.545 L 038 1.362
5000

.56z8 .2590
4.056 3.757 3. 06s z. 55a L.S80

10000
1:069

5.856 4. 7s8
.7507

4.066 3.5ss 2.aao
25000

2.069 1.7s1
8.857 7.750 7. 0b6 6.5S9 5.aao 5.069 4.751

.>,

2a



Comparisons of Cdctd.ated PD’s at VariousValues of rD and tD for Closed Systems

rD =2 rD =5

tD (pD)co (pD)c (PD)PSS ‘D bD)m (pD)c (PD)PSS

0.20 0.4241 0.427 0.4489 3.0 1.1665 1.167 1.2255

0.30 0.5024 0.507 0.5156 4.0 1.2750 1.281 1.3088

0.40 0.5645 0.579 0.5823 5.0 1.3625 1.378 1.3922

0.50 0.6167 0.648’ 0.6489 6.0 1.4362 1.469 1.4755

7.0 1.4997 1.556 1.5588

10.0 1.6509 1.808 1.8088

r~ = 10

tD (pD)m (pD)c (PD)PSS .’

15 1.8294 1.832 1.8973

20 1.9601 1.968 1.9983

30 2.1470 2.194 2.2003

40 2.2824 2.401 2.4024

50 2.3884 2.604 2.6044

Comparisons of pD’s at r~ = 100,

Closed Outer Boundary (Katz et al., 1968]

tD bD)oa bD)c (pD)pss

100 2.7233 2.723 3.8760

250 3.1726 3.173 3.9060

500 3.5164 3.516 3.9560

1,000 3.8584 3.861 4.0560

2,500 4.3166 4.335 4.3561

5,000 4.6631 4.856 4.8561

10,000 5.0097 5.856 5.8562

25,000 5.4679 8.857 8.8569
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If we look at the results from all four of these tables in de@ certain trends and

comparisons become obvious. First it is clear that the infinite system tables show the

smallest pressure drops, as we should expect. But of great importance, is that, at early

times, the actual pressure behavior of the tite systems closely follows that of the infinite

system.

The pseudo-steady state equations predict the greatest pressure drops. Again this

is as we would expect. But again, we reach the important conclusion that the later time

behavior of all the real systems closely follow the pseudo-steady state equations, as we

had anticipated.

A most important conclusion can be reached by evaluating the tabulated data in

detail. We see that one or the other of these simpler equations will predict the values in

the tables with an error of only about 1% over the entire range of data! Real pressure

drop data are never this accurate. So, in brief, the tables for finite systems are not needed

at all! We can use the infinite system equations at early times and then switch to the

pseudo-steady state equation to calculate later pressure drop history.

To carry the idea out in det~ I have performed these same calculations for a host

of r~’s ranging from 1.5 to 100, and have listed the values for the t~’s at the crossover

times. These results are listed in the table on page 32.

Other columns are also listed in this table, and the reasons for them will be

discussed. The square root of tD is listed because I wished to graph these data on log-

log paper, and this was a convenient way to reduce the range Of data to fit on 3x 3 cycle

log-log paper. These data are graphed as circles in Fig. 5, page 31. Notice that the data

curve at smaller values of tD and rD, but they are nearly a straight line at large vahles of

these parameters.

It seemed likely that it would be possible to straighten this line by making

adjustments for rD, in either the tD term Or in the r~ coordinator itself. Several ideas

were tried, and the most successfid one was to simply graph rD – 1 rather than rD. The

resulting data are shown as diamonds on Fig. 5. They clearly f~ on a straight line,
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whose slope is almost equal to 1.00. This straight line was fit to an equation, as

follows,

t~ = 0.328 (rD - 1)10945 (23)

Note that the exponent on rD -1 is 1.945 rather than 2.000, which it would have been if

the slope had been 1.00 in Fig. 5. Equation 23 was used to calculate tD’s and these are

listed in the last column of the table below. These values can be compared with the data in

the second column. Clearly, the fit is excellent. A fit of ~ 10% on tD would have been

quite satisfactory, and this fit is considerably better than that.

Times for Switching From Infinite Acting

Behavior to Pseudosteady State Behavior

rD

—

1.5

2.0

3.0

5.0

7.0

0

4

0

0

00

Crossover

tD

0.08

0.35

1.3

4.5

11

25

50

100

675

2500

0.283

0.592

1.14

2.12

3.32

5.00

7.07

10.0

26

50

rD-l

0.5

1.0

2.0

4.0

6.0

9

13

19

49

99

calculated

tD

0.0852

0.328

1.26

4.86

10.7

23.5

48.1

101

636

2497

In summary, to make calculations for a closed system at constant rat~ at early

times the equation for an infinite system can be used, and at late tines, Eq. 22 can be used.

Equation 23 defines the time, tD , to switch horn early to late time calculations.

32



One last useful idea for this system is the concept of a drainage radius, rd. If we

were to flow at a constant rate in an infinite system, we find that the pressure/distance

curve looks much like Fig. 6. A graph of the Katz, et al. daa for rD =100 , at

tD =100 and also at tD =250, would show this sort of behavior. The value of PD

varies linearly with the logarithm of rD for some distance, and then curves gradually

toward PD = O at larger vabs of r~. At later times, tD2 , the straight line extends

fiuther into the system, but the gradual curve toward p~ = O at larger r~, is similar.

The important point is that the slopes of the straight line portions of these curves,

at small rD’s , are the sarnq and these slopes can be extended as straight lines toward

PD = O, as indicated by the dashed lines in Fig. 6. These straight line intercepts have

commonly been called the drainage ratios, rd. This is somewhat unfortunate

nomenclature, for it gives the erronious impression that the aquifer is only being drained

out to that distanc~ while we know that drainage actually extends out to infinity, or to the

outer boundary of the aquifer.

If the aquifer radius is quite large, we can use this idea of drainage radius in a

useiid way to calculate pressure histories. The slopes of the straight lines in Fig. 6 are

proportional to qW, and one can write an equation for them using Darcy’s Law.

2zHz(p~-pw)
qw =

~ h’1(rd /rw)

or,

(24a)

p~ =1+ /rw) (24b)

and, invoking Eq. 13, the log approximation, which is valid for the infinite system tier a

period of time, we can set the two equations equal as follows,

h’&/r~)=P~ ‘1/2(lntD +0.80907)

which simplifies to,

(rd /rw) = (2.2458t#2

(25a)

(25b)
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In a finite aquifer, at late times, we already know that the system reaches pseudo-steady

state, as defied by Eq. 20. If the aqtier k ~ge, fie ratio, (re / riv)2>fi f= greater ~~

1.0, and Eq. 20 thensimplifiesto,

2zklz(p-~w) =~(0.472 re/rw) (26a)
q WP

= h (r~ /rw)

or

rd = 0.472re (26b)

So Eq. 25 defines rd for a large fite acting system, while Eq. 26b defines rd for a

large finite system. We would like to combine these equations and relate them to the data

in the Katz et al. table. In that table, the pressure drop was expressed in terms of Pi - pw

rather than ~- pw as it is in Eq. 26. TO c~ge me pr=s~e difference us@ we cm

invoke Eq. 21b, as we did before,

2Jfh(pi‘~)= 2’D(re/rw)2-1

which for large values of (re / rw)2 , shT.IplifiMto,

‘(Pi -10=2t~(rw/re)2
(lP

Adding Eqs. 21c and 24b, and rearranging, we get,

h(rd /r~)= p~(l,~~)–2f~(rw/re)2

(21b)

(21C)

(27)

Now we are in a position to look at the behavior of these closed systems, using the

radius of drainage concept, to see if they can be related to each other in a general way.

Clearly, at early times, Eq. 25b will be valid. In the table,. at the top of page 37, I evaluate

this equation at various times, in terms of rd I re ra~er ~~ rd / rW . ~ese da~ are

graphed as diamonds on Fig. 7, on page 36.
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hfinite Acting Radius of Drainage, rd .

t~ (rw/re)2 I ~~=,d,,e
0.001 0.0474

0.002 0.0670

0.005 0.106

0.010 ‘ 0.150

0.020 0.212

For comparison, well also look at the results in Katz’s table at (re / rW)= 50 and

100, calculate their drainage radii as functions of time, and graph the results using

(rd /re) . The results from Katz’s table (from Eq. 27) are shown in the table below.

Radii of Drainage for Finite Closed Systems

tD

25

50

100

500

1,000

2,500

5,000

(re/rw)=50

t~(rw/r~)q

0.01

0.02

0.04

0.20

0.40

1.00

2.00

The data for

PD(lY~D)

2.062

2.388

2.723

3.522

3.963

5.166

7.167

rd / re

0.154

0.209

0.231

0.454

0.473

0.474

0.475

tD

100

250

500

“ 1,000

2,500

5,000

10,000

15,000

(re/rw)=lOO

t~(r../r~)2

0.010

0.025

0.050

0.100

0.250

0.500

1.000

2.500

PD (l~rD)

2.723

3.173

3.516

3.861

4.335

4.856

5.856

8.857

rd / re

0.149

0.227

0.304

0.389

0.463

0.473

0.473

0.473

(re/rW) =50 are graphed as squares on Fig. 7, and the data for

(re/ rW)= 100 are graphed as circles. Notice in this figure that dl the data fit closely

with each other. The early data for the infinite system (the diamonds) join smoothly with
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tie systems of finite radius. ~o, the data for (re / rW)= 50 and (re / rW)= 100 fit we~

with each other at later times. As a good approximation at tD (rW/ re) 2<0.025, all the

systems are Mnite acting; and at tD(rW/re)220.25 , the systems act as the pseudo-

steady state equation predicts.

All this is interesting and informative, but, to be honest, it is not very useful for

aquifer problems. It is seldom of importance to consider aqtiers whose re / rW are

greater than 50. As you might expect, it is of use for reservoir problems where re / ~W

are nearly always greater than 50. Since these ideas have not been discussed in my earlier

notes on the difhsivity equation, I decided to include them here.

I should add that a quite nice practical use of those ideas was made several

decades ago when Al Hussainy et al. (1966) developed their concept of the real gas

potential to predict flow and depletion behavior of gas reservoirs. In developing their

concepts, they used this same radius of drainage idea to simplifj the equations of transient

flow of gases.

Constant Pressure Inner Boundarv

For the constant rate cases, Chatas looked at three outer boundaries: inlinite,

closed and constant pressure. We might expect that, for the constant pressure cases, he

would have looked at the stie outer boundaries. In Chatas’ Table 2, he lists the Mn.ite

system, and in Table 3 he lists closed outer boundaries. He did not look at the cons~t

pressure case. Christine Ehlig-Economides (1979) did look at this conditio~ but the

smallest outer radius she looked at was rD =20 . So the results are not very useful for

aquifer flow problems. It is not too important to consider this case, so we’ll ignore it, and

begin by looking at the infinite system in Chatas’ Table 2.

Infinite Aquifer

Note the headings in Chatas’ Table 2 for the infinite aquifer. Dimensionless time

is labeled, t, while we commonly use tD in present day nomenclature. The fluid influx
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term is labeled q(t) . This is cumulative influx, and the present nomenclature we use for

this is QD (tD) . Dimensionless influx rate, the time derivative of the cumulative influx,

is not listed in this table, but we will discuss this later, and its symbol is q~ (t~ )

in present day nomenclature. Note that the values of QD (tD) grow constantly with

time and become quite large, as we should expect, upon reflection.

It should be of interest to look at the rates of influx as a function of time, for we

know from well testing theory, that after a period of time, we would expect the log

approtiation, Eq. 13, to be valid. To test this idea out, I have listed many values of PD

for the infinite system from Chatas’ Table 1, values of 1/ qD from Ehlig Economies,

horn the attached table on the next page, and compared them with the log approximation

(Eq. 13) in Fig. 8 on page 41. The data for this figure are tabulated on page 42.

A look at Fig. 8 shows that, for the constant rate case, pD approaches the log

approximation solution quite closely at times, (tD) , ranging horn about 20 to about 100,

depending on the accuracy we choose to invoke. The constant pressure data (1/ qD) also

approach the log approximation, but at a much slower rate. Even at tD =1,000, the

error is still over 3%. So, in brief, this concept k not at all usefhl as away of simplifying

aquifer influx-calculations. The only insight this exercise provided us was the knowledge

that the results behave in a logical manner in a way we would expect them to. It turns out,

however, that some of the concepts in these notes and graphs can. be used to work out

approximate equations for the infinite aqtier with a constant pressure inner boundary.

These ideas w~ be discussed next.

For the constant rate inner boundary, we noted in the narrative following Eq. 12

that the very early time data closely followed the (tD)1’2 equation. W“ is also true for

the constant pressure case. It seemed likely that this idea could be extended empirically

by adding a term using tD to some other power. It turned out this idea worked

well up to a time, t~ =10 . The following equation

QD(~D)= 1.058#2 +0.510 tjjgo

was found to fit the tabulated da@

(28)
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Flow Behavior for Consfant Ihessure Inner Boundary and Infinite Outer
Boundary, Skin =0; Elig-Economides (1979)
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Comparkon of PD and I/qD @finite systems)

Time Constant Pressure Inner Boundary I Constant Rate Inner Boundary

tD qD l/qD PD

0.10 2.2489 0.445 0.314

0.20 1.7153 0.583 0.424

0.40 1.3326 0.750 0.565

0.70 1.1025 0.907 0.702

1.0 0.9838 1.016 0.802

2.0 0.8006 1.249 1.020

4.0 0.6644 1.505 1.275

7.0 0.5793 1.726 1.500

10 0.5339 1.873 1.651

20 0.4612 2.168 1.960

40 0.4040 2.475 2.282

70 0.3664 2.729 2.550

100 0.3456 2.894 2.723

200 0.3108 3.217 3.064

400 0.2820 3.546 3.406 .,

700 0.2623 3.813 3.684

1000 0.2510 3.986 3.858

A comparison of this equation with Chatas’ Table 2 is shown on the following page.

Actually, for this comparison, we did not use Chatas’ tabulated results, for we found that

there are some minor errors in his table. The more recent work by Ehlig-Economides

(1979) was used to fit and evaluate Eq. 28, and also in the longer time matches that will be

discussed soon. A copy of her thesis table is on page 40. It does not extend to as short a

time as Chatas’ table, so the first two time values in the following table are fkom his work,

while the remainder are from Ehlig-Economides.

42



Early Water Intlux Calculations

QD for 0.01< tD <10.00

QD(tD)= 1.058#2 +0.510 t}go ;q. 28

tD

0.01

0.05

0.10

0.20

0.50,

1.00

2.00

5.00

10.00

QD (tD)

Eq. 28

0.1139

0.2710

0.3987

0.4929

1.0211

1.5680

2.4479

4.5367

7.3968

QD (tD)

Ehlig-Economides

0.112

0.278

0.404

0.598

1.024

1.568

2.446

4.534

7.402

% Error

+1.7

-2.5

-1.3

-0.9

-0.3

0.0

+0.1

+0.1

-0.1

Notice that the fit is quite accurate over this range. The wilues at tD =0.01 and 0.05

show rather large errors of up to 2.5 Yo, but these are usually not too important in

practical use. Further, there is likely some inherent, error in Chatas’ table for these low

values of tD for they do not quite behave logically, based on the trend one would expect.

This could have easily arisen, for very many terms of the infinite series are needed to

calculate the early time solutions. But, in any case, for practical application, Eq. 28 is

quite dequate up to tD =10.00 .

At late time, the curves in Fig. 8 give us some insight on how to develop an

approximate equation using a semi-logarithmic approach. It seems likely that an equation

of the form,

tD

QD (tD)
‘~+ bhi(tD) (29)
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might be a useful way to handle the long time behavior. It is! However, we would like to

extend this equation to a shorter time range if possible. A useful way to accomplish this

goal is to add an empetical constant to the tD on the left-hand side of Eq. 29. The final

resulting equation I found was,

QD(tD)= tD -1.4
0.0407 +0.4887 ln(tD)

(30)

This equation fit Eblig-Economides’ tabulated data from tD = 10.0 to tD= 100,000, as

shown in the table below.

Late Time Water Influx Calculations ‘

QD(~D) for 10< tD S 100,000

QD(~D)= (~D- L4)/[0.0407+0.4887 in tD] = Eq. 30

tD tD –1.4 in t~ QD (tD) QD (tD) % Error

Eq. 30 Ehlig-
Economides

10 8.6 2.30259 7.376 7.402 -0.4

20 18.6 2.99573 12.361 12.321 +0.3

50 48.6 3.91202 24.891 24.845 +0.2

100 98.6 4.60517 43.034 43.029 +0.0

200 198.6 5.29832 75.513 75.595 -0.1

500 498.6 6.21467 162.00 162.24 -0.1

1X103 998.6 6.90776 292.29 292.64 -0.1

2x 103 1,998.6 7.60090 532.21 532.54 -0.1

5X103 4,998.6 8.51719 1,189.27 1,188.8 +0.0

1X104 9,998.6 9.21034 2,201.5 2,198.6 +0. 1

2X104 2X104 9.90349 4,097.6 4,088.7 +0.2

5X104 5X104 10.81978 9,383.6 9,352.7 +0.3

1X105 1X105 11.51293 17,646 17,573 +0.4
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Clearly, these two equations do a remarkably accurate job of predicting water

influx for a radial infinite aquifer. The”time limit of tD =105, is fm kger ~~ wo~d

normally be needed for water influx calculations.

The reader might be interested in the exact time range to tie to switch from Eq. 28

to Eq. 30. I%e evaluated these equations in the range near tD =10, and found that they

were identical at tD =11.4 . So this should theoretically be the crossover time.

However, a time of tD =10 would be quite adequate for good accuracy.

Closed Outer Boundary

In thinking about a closed outer boundary, with a constant pressure inner

boundary, we should realize that, after a period of time, water influx will stop. This will

occur when the entire aquifer has been depleted to the pressure level set at the inner

boundary.

We can calculate the values of maximum cumulative influx we can expect for a

given system using simple material balance principles, as follows:

“=* ~ (31)

The variables in this equation can be put into dimensionless form. For pressure, the result

is,

~D =
F–Pi = ‘F (32a)

Pw– Pi Pw– Pi

At the time when the average pressure equals the inner boundw presswe, Pw , l%!. saa

simplifies to,

FD(’+= ‘-pi = ‘~ ~~ (32b)
Pw-Pi Pw-Pi

The cumulative influx term, Q(t) , in dimensionless form, is,

@)(tD)=
Q(t)

2z@ct hr;(p~ – pw)

(33)
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When Eqs. 32b and 33 are substituted into Eq. 31, the result is,

~D( ) (re/rw)2-l ?&lm= =
2 2

(34)

We can test the validity of this equation by looking at the long term results in Chatas’

Table 3. At r- =2.0 the long time result is 1.500, just as Eq. 34 predicts; at r~ = 10.0,

it is 49.36 in the table compared to 49.50 from Eq. 34. C1earlythe time data were not as

complete in this table as they should have been. Other radii show shnilar long time results.

The early time data in these tables also behave logically. We would expect that, at

early time, the effect of the outer boundary would not be felt. So the finite systems should

act the same way as an infinite system. At rD = 2.0 and tD = 0.10 , the tabulated value

for QD is 0.404 in Chatas’ Table 3, exactly the same as it is in Table 2 for the infinite

system. At rD = 10.0 and tD = 10, the value for QD in Table 3 is 12.32, again exactly

the same as in Table 2. This is the reason that Chatas started his listings in Table 3 tier a

period of time, for he recognized that the early time data would be the same as in Table 2.

Ehlig-Economides, in her Ph.D. dissertation, looked at the behavior of reservoir

flow for a constant inner boundary pressure. One important conclusion she reached was

that all the finite systems exhibit exponential decline behavior once the outer boundary is

felt. Of course this behavior should also be found in finite aquifiers.

It is interesting that neither van Everdingen and Hurst (1949) nor Chatas

recognized this fact. It’s likely that the reason she noticed it, and they did not, is because

she also calculated rate data in her work, while they only looked at cumulative influx data.

It turns out, however, that if rate data show an exponential decline, so will cumulative

influx da~ if they are graphed properly. Ill discuss the ideas behind exponential decline

to show how these equations are developed, and then show how these ideas can be used

to tranform Chata.s’tabulated results into simple equation forms.

For any system, we know that the flow rate is proportional to the pressure

gradient. For any finite system, after a time, the flow rate at the inner boundary is also

proportional to the difference between the average pressure and the inner boundary

46



pressure, as follows.

~(t) = cl~(t)- ~W] = dQ(t)

(pi -Pw) d’
(35)

It was this concept that led to Eq. 20 of these notes. Also, we should realize from general

material balance concepts, that we can defie cumulative influx as follows,

Q(t) = Czbi - p(t)]
(Pi-Pw)

We can now combine Eqs. 35 and 36 to get,

‘(’)=++%]
which can be rearranged to,

C2 Q(O dQ
;dt=-— $
0 c1 o Q-C2

which, when integrated, becomes,

C2 ~

[1

C2
t—

= c1 C2 - Q(t)

(36)

(37a)

(37b)

(38a)

This is the form of the resulting exponential decline equation when it is expressed in terms

of the cumulative production. The argument of the log term in Eq. 38a can be expressed

as a rate function rather than a cumulative production, using Eq. 37% as follows,

C2-Q(’) al Q(’) _~

C2 C’2 c1

As a result, Eq. 38a becomes, ‘

[1-c2~.4_t
c1 q (t)

(39)

(38b)

which is the form of the exponential decline equation most commonly seen in various

references. We, however, will concentrate on Eq. 38% for our tabulated influx data are in

terms of cumulative influxes.
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Next we need to evaluate the constants, Cl and C2 in Eq. 38a. At time, t = O,

Q(t) = O, and either from Eq. 37a or Eq. 39, we can define Cl ,

q(t)= q(o)=cl (40)

At the other end of the time spectrum, when t ==, the log term in Eq. 38a must be

infinite, so we can conclude,

Q(t)= Q(-)=c2

As a result, Eq. 38a becomes,

(41)

(38c)

Equation 38c is only valid from the time when exponential decline begins.

However we can extrapolate the equation back to t = O , and it will change to the

following approximate form, which is not quite correct, but very nearly so.

We also would prefer to write this equation in dimensionless

(38d)

terms, for the tabulat,ql data

are dimensionless. Since all the terms outside the logarithm combine to be dimensionless,

and the ratio inside the log term is also dimensionless, the resulting equation can be

written immediately,

[

~D = QD (m) -QD 0 ~ QD (00) -QD (0)

qD (0) QD (CO)- QD (~D)1 (38e)

It only remains to evaluate these terms from first principles andfiom the data in Chatas’

tables.

The evaluation problem is a bit more difficult than it first appears to be. The

reason can be seen by comparing the pressure fiekls that are developed for the constant

rate depletion system with those seen for the constant pressure system. These are shown

schematically in Figs. 9 and 10. First look at the constant rate case, Fig. 9. Note that the
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pressure fields will look exactly like each other, merely dropping with time. It was this

concept that allowed us to derive the pseudo-steady state equation, Eq. 20. -

For the constant pressure depletion, Fig. 10, the shapes of the curves are all

similar, but their slopes decrease as the system depletes. This, of course, is reflected in the

decreasing rates as they deplete. As far as I know, no simple analytic solutions have been

derived for this type of depletion. I have been working on some ideas to define these

equations analytically, but have not yet come up with any simple equation forms that

correctly honor the boundary conditions and the necessary material balance principles in

the way that the pseudo-steady state equation does for the constant rate case.

I have however, come up with an approximate way to express the behavior of Fig.

10. The idea is as folIows. At any time, tD, I assume that the pseudo-steady state

equation is valid for the particular pressure range and rate that would be associated with

that time. In essence, when doing this, I’m assuming that the pressure field in Fig. 10

declines everywhere at the same rate as it would in the pseudo-steady state formulation, as

illustrated in Fig. 9. When first glancing at those fiwes, this appears to be a grossly

erronious assumption, but it is not nearly as bad as it appears. The reason is that the radii

on these figures are on logarithmic coordinates; and in reality, most of the volume being

depleted is at the larger values of rD, where the shapes don’t change dramatically. Using

this idea, the predicted depletion rate will be greater than is actually taking place, but not

much greater.

All these ideas require a number of graphical procedures and calculations, plus

some correlation work to correct for flow equation errors discussed above. The

procedure I used was as follows. First I graphed @D (00)– QD(tD )] from Chatas’ Table

3 against tD on sendog paper, as suggested by Eq. 38e. The straight line portions of

these graphs were extrapolated to tD = O. These are the correct values of

k2D(co) -QD(0)] tO USein l%. 38e. After M of @tm’tables had been evaluat~ ~~g

this procedure, an empirical equation was derived to account for these errors. It was only

a fimction of re / rW, as we would expect.
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Finally, I evaluated the slopes of the sernilog straight lines, and compared them to

the slopes one would calculate using the pseudo-steady state assumptions for the terms in

front of the logarithm in Eq. 38e. Of course, there was a slight error, which I correlated

against re / rW.

Since all this procedure may be a bit hard to follow, I’ll show a detailed set of

example calculations, for r- =4.0 , to show how this procedure was worked out. For

r- = 4.0, from Eq. 34, we can calculate Q~ (=) , as follows.

QD(CO)= [(~e1qv)2-1]/2

= [(4.0)2 -1]/2 = 7.500 (42)

The appropriate data from Chatas’ Table 3 are listed in the table on the next page.

From the graph of the da~ Fig. 11, page 54, it is clear they fit a semilog straight line for

times, t~ 22.00 . To evaluate the slope, I used values horn the table at tD =2.0 and

t~ = 26.0.

t~ = 2.00 s QD(~D)= 2.442 ; QD(00)-QDOD) ‘S.0S8

tD = 26.0 , QD(tD)‘7.377 ; QD(00)‘QD(tD) ‘0.12s

We evaluate the slope as follows,

AtD 26.0 – 2.00
ln[AQD (2.00)] - hIIAQD(26.0)] = in (5.058) - in (O.123)

= 6.4576 (43)

Using the slope from Eq. 43, and the value of QD(CO)– QD (2.00) equal to 5.058, the

value of QD (CO)- QD (0) Cm be easily calculated,

hIIQD(~) – QD(0)]= 6~~6 + III(5.058)

QD(OS) -QD(0) = 6.8942
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Exponential Decline Data for re / rW= 4.0

2 1]/2=15/2=7.5QD(=’) = [(~el~w) –

tD QD(~D) 7.5- QD(tD)

2.0 2.442 5.058

2.2 2.598 4.902

2.4 2.748 4.752

2.6 2.893 4.607

2.8 3.034 4.466

3.0 3.170 4.330

3.25 3.334 4.166

3.5 3.493 4.007

3.75 3.645 3.855

4.0 3.792 3.708

4.5 4.068 2.432

5.0 4.323 3.177

5.5 4.560 2.940

6.0 4.779 2.721

7.0 5.169 ~2.331

8.0 5.504 1.996

9.0 5.790 1.710

10.0 6.035 1.465

12.0 6.425 1.075

14.0 6.712 0.788

16.0 6.922 0.578

18.0 7.076 0.426

20.0 7.189 0.311

24.0 7.332 0.168

26.0 7.377 0.123
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Thus the value of Q~(0) for this r~ (r~ =4.0) is,
●

QD(0) = 7.500-6.8942 = 0.6058 (45)

The values of QD(0) for all the radii were correlated into an equation which will be

discussed later.

Next I calculated the approximate value for qD (0) assuming the pseudo-steady

state equation was valid. This equation is,

1 = ~; ‘r~ 1=(4.0)2111(4) _l_ “

m(o) 7---1 2 (4.0)2-1 2

= 0.9787 (46)

Thus the approbate value for the slope is,

QD(-) ‘~~(”) = 6.8942(0.9787) = 6.7474 (47)
q~(o)

The actual slope is Eq. 43, while the approximate slope is Eq. 47. The error is thus,

Slope Error = 6“7474 = 1.045
6.4576

(48)

The values of these errors were correlated into an equation for all radii. This correlation

equation will be discussed later.

Note that there were two empirical equations developed to evaluate the parameters

in the decline equations. The first one mentioned was for QD(0), as discussed after Eq.

45. Values for QD(0) were evaluated for all the rD’s in Chatas’ Table 3. The results

are shown in the table on the next page, along with some other columns of numbers,

whose meaning will be discussed next.
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Correlation for QD (0).

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

7.0

8.0

9.0

10.0

rD–l

0.5
1.0
1.5

2.0

2.5

3.0

3.5

4.0

5.0

6.0

7.0

8.0

9.0

From Chatas’
Table 3, QD (0)&..,,H,..,.#f,,f,,..... ...0...... ......

0.0945
0.1890
0.2925
0.3896
0.5001
0.6058
0.7141
0.814
1.064
1.300
1.540
1.798
2.050

QD(0) -0.013

0.0815

0.1760

0.2795

0.3766

0.4871

0.5928

0.7011

0.802

1.051

1.287

1.527

1.785

2.037

Calc.

QD(0).,...,,,,,#0,,,,w#,#,.

0.0943
0.1886
0.2885
0.3923
0.4990
0.6081
0.7193
0.8322
1.063
1.298
1.539
1.783
2.030

% Error

-0.21
-0.21
-1.37
+0.69
-0.22
+0.38
+0.73
+2.24
-0.09
-0.15
-0.06
-0.83
-0.98

h the second column, are listed values of rD – 1, for this was found to be the best

way to correlate the data. The third column shows 4values of QD(0) calculated by

extrapolating Chatas’ data from Table 3 to zero time. A log-log plot of rD – 1 versus

QD @) WaS~Ost a Strtight he, but curved slightly. By trial and error, I found that it

could be straightened by subtracting 0.013 from QD(0), and these values are tabulated in

the fourth column, and graphed in Fig. 12, page 57, along with the empirical straight line

found by least squares fitting of the data. The resulting equation is,

QD(0) = 0.013+ 0.1756 (rD-1}111 (49)

The next two columns show the calculated values of QD(0) and the errors compared to

thy data used in Column 3. Note that the maximum error is 2.24%. This is very good

indeed ! Remember that it is not the value of QD(0) that is needed, but rather the value
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of QD(00)– QD (0). At small r~ (rD =1.5) , QD(0) is only about 15% of QD (-),

and the ratio decreases at higher r-’s , so that at r~ =10 , QD(0) is only about 470 of

QD (-) . Thus the actual errors in Q~(00)– Q~(0) areconsistently below 1%.

Next, I looked at the errors in the slopes calculated using the pseudo-steady state

approximation. For rD =4.0 , the value of 1/ qD (0) was 0.9787 (Eq. 46), the calculated

slope was 6.7474 (Eq. 47), compared to the actual slope from Chatas’ Table 3 of 6.4576

(Eq. 43). The ratio of these slopes (the error due to the pseudo-steady state assumption)

was 1.045 @q. 48). This same procedure was carried out for all the rD’s in Chatas’

Table 3, and the results are listed in the table below, along with some other columns

whose meaning will be discussed next.

Exponential Decline Slopes

rD # -1 Error Ratio 0.057 Calculated Error % Error in

()

0.297
Ratio (Eq. 50) Approx. Eq.

?–&l
.................. ..>,..,#,##,..,,fife...e.,,.,..,,,.#,.,,,..,,.......................

1.5 1.25
,,>,,,.,,,f.,,,,,,.,....................................... .......................... ..................

1.021 0.0533 1.0167 -0.43

2.0 3.00 1.030 0.0411 1.0289 -0.11

2.5 5.25 1.033 0.0348 1.0352 +0.22

3.0 8.00 1.042 0.0307 1.0393 -0.27

3.5 11.25 1.042 0.0278 1.0422 +0.02

4.0 15.00 1.045 0.0255 1.0445 -0.05

4.5 19.25 1.049 0.0237 1.0463 -0.27

5.0 24.00 1.051 0.0222 1.0478 -0.32

6.0 35.0 1.051 0.0198 1.0502 -0.08

7.0 48.0 1.054 0.0181 1.0519 -0.21

8.0 63.0 1.052 0.0167 1.0533 +0.13

9.0 80.0 1.054 0.0155 1.0545 +0.05

10.0 99.0 1.057 0.0146 1.0554 -0.16
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The second column in the table lists r; -1, for this was the parameter that was found to

best correlate the data. The third column lists the ratios of the slopes found when

comparing the pseudo-steady state equation wi-th the slopes from Chatas’ Table 3.

Remember that earlier I stated that the depletion rates using the pseudo-steady state

approximation would be greater than what is actually taking place. The numbers in this

column, ranging from 1.021 to 1.057, indicate the small size of this error.

Next, I correlated the size of this error, as a function of r; – 1, with the following

equation.

Error = 1.070 –
0.057

(r: -1)0”297

The power fimction portion of this equation is shown

(50).

in the fourth column, and the

calculated emor ratios from Eq. 50 are shown in the fifth column. Finally the errors in the

calculated slopes are shown in the sixth column. Note that the maximum difference is

0.43%, a remarkably accurate result! Thus we now can calculate all the decline portions

of the finite constant pressure aqtiers with considerable accuracy using simple equations.

In brief then, we now know we can calculate the early time constant pressure

aquifer data using Eq. 28 or Eq. 30, depending on the time range required, and we can

calculate the later time (depletion ) history using Eq. 38e. It only remains to define the

time to switch from infinite-acting to finite-acting (depletion) behavior. Again this

required correlating the data in Chatas’ Tables 2 and 3 as a fimction of r~ . The equation I

came up with was,

(tD)WitCh= 0.1600(rD- 1)2.21 (51)

Equation 51 is not very accurate. The reason it is not, is that for all r~ ‘s, the infinite-

,acting data and the finite-acting data were quite close to each other over a rather broad

time range. Thus the precise times could not be defined very accurately. This, of course,

is good news, for it almost guaranteed that all the resulting calculations would be

reasonably accurate.
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To evaluate the accuracy of these equations at the times when we switch from

infinite acting to finite acting behavior, I have listed all the influx values from Chatas’

tables and from my equations in the table below. In this table, the first column shows all

the rD’s (re / rW values) listed in Chatas’ Table 3. The second lists the switchover times

calculated by Eq. 51; while the third column shows the actual times used. These times

were picked to be near the calculated times, and also compatible with the listings in

Chatas’ tables.

Influxes From Chatas’ Tables 2 and 3
Compared to Approximate Equations

.
Calc. j

—.
~ Acting QD Finite Acting QD

rD ~ (t~)w”~c~ ~ (tD)~~~h Eqs. 28 /Chatas’1%38e \chatas’ ‘m”
~ Eq.51 ~ ‘Sd and30 ~Table 2 \ Table 3 ‘m”

(%)

1.5 ~ 0.035 ~ 0.050 0.2710 ~ 0.278 0.2753 ~ 0.276 2.58

2.0 ,~ 0.160 ~ 0.15 0.5022 / 0.520 0.5064 \ 0.507 3.54

2.5 ~ 0.392 ~ 0.40 0.8927 \ 0.898 0.8940 ~ 0.897 0.59

3.0 ~ 0.740 ~ 0.70 1.255 ~ 1.251 1.257 ~ 1.256 0.46

3.5 ~ 1.212 ~ 1.00 1.568 ~ 1.569 1.574 ~ 1.571 0.56

4.0 ~ 1.814 ~ 2.00 2.448 ~ 2.447 2.443 / 2.442 0.24

4.5 j 2.55 ~ 2.50 2.836 ~ * 2.836 ~ 2.835 O.&i

5.0 \ 3.43 ~ 3.50 3.554 i * 3.552 ~ 2.542 0.34

6.0 ~ 5.61 ~ 6.0 5.150 ~ 5.153 5.144 ~ 5.148 0.17

7.0 ~ 8.39 ~ 9.0 6.859 ~ 6.869 6.853 ~ 6.861 0.23

8.0 ~ 11.80 ~12.0 8.446 ~ 8.457 8.436 ~ 8.431 0.31

9.0 ~ 15.85 ~15.0 9.970 \ 9.949, 9.932 ~ 9.945 0.38

10.0 ~20.6 ~20.0 12.36 ~ 12.32 12.29 ~12.30 i 0.57

The fourth and fifth columns compare the QD’s for the infkite acting systenx the

fourth column is born my Eq. 28 for rD’s up to 7.0, and horn Eq..3O for the three larger

rD ‘s; while the fifth column lists the results horn Chatas’ Table 2 for these same times.
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Note that there are two blank spots in the Chatas’ listings. This is because there were no

listings for these times in his Table 2.

The sixth and seventh columns show the same kind of information for the finite

systems. The sixth column shows the predicted values of QD horn Eq. 38e, while the

seventh column shows values listed in Chatas’ Table 3. It is of interest to realize that, at

any rD , all four values of QD are very close to each other, as of course they shotdd be.

To compare them in det@ I’ve listed the maximum difference in the QD listings in the

eighth column. Note that the first two show differences of 2.58 and 3.54%, while all the

others are less than 1% in maximum difference. This is a remarkably accurate result! As

I’ve said earlier, I have some doubts about Chatas’ tables at small values of tD , but even

a 3.54% error would be satisfactory.

An indication of some of the inconsistencies in Chatas’ tables can be seen by

looking carefully at the table listings for rD =3.0 and 3.5. If rD =3.0 , the tD used was

equal to 0.70. In Chatas’ Table 2, the infinite system, the value for QD is 1.251, while

for the finite system it is 1.256; a larger value, which of course, is impossible. The same

behavior is seen at ?“ = 3.5; the infinite system QD is 1.569 compared to 1.571 for the

finite system.

The fhal evaluation is to compare the calculated exponential decline slopes (using

all the material discussed here) with the slopes found from Chatas’ Table 3. The equation

for the decline using my method is as follows,

Calculated Slope = QD(OO) -QD(0)

qD (0) (~n’~r)
(52)

In this equation, the term QD (CO)- QD(0) comes from combining Eqs. 34 and 49. The

rate at tD = O, qD (0) , comes from calculations similar to Eq. 46, and the error is Eq.

50.

In the table on page 62, I’ve compared the results from Eq. 52 with Chatas’

slopes, using calculations similar to Eq. 43. In brief, the decline rates calculated for these

systems are quite accurate.
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Comparison of Slopes From Chatas’ Table 3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0!

6.0
!

7.0

8.0

\ 9.0
i

10.0
I......__

With Slopes From Eq. 52

Decline Eq
Eq. 52

0.1199

0.5406

1.334

2.555

4.251

6.461
I
! 9.214
t

12.537
i

21.02
~

32.07!
!
\ 45.87

62.55\

l_-_X:.!_6--------

~tion Slopes

Chatas’ Table 3

0.1199

0.5384

1.332

2.537

4.248

6.457

9.197

12.580

21.01

32.03

45.91

62.52

81.98

Error
%

0.00

0.41

0.15

0.71

0.07

0.06

0.18

-0.34

0.05

0.12

-0.09

10.05

0+22
———.-----

In general we can conclude that aquifer influx history can be calculated easily for

any radial system, using simple equations rather than voluminous tables. Further, the

process is easier. But probably the most important aspect of this rather voluminous

exercise, was to show the nature of the aquifer influx equations and how they behave. For

the infinite system, simple equations are valid, and they behave logically. At short times

the influx history acts like an extension of the very short time equatio~ while for long

times the influx history is semi-logarithmic in form, as we might have expected. In the

finite systems, after a period of time, the systems show exponential decline behavior, and

the values of the decline intercepts and slopes behave in the logical manner one would

expect, based on the rate equations and on material balance principles. These are

important ideas that need to be emphasized, for often such ideas become lost when results

are expressed in infinite series equations or in tables.
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Superposition

~ Chatas’ tables are interesting and usef@ but they normally cannot be used directly,

for it is seldom true that either rate or pressure are held constant at the reservoir/aquiler

boundary. This is not a serious problem, however, for wecaninvoke the concept of

superposition, which Ill discuss next.

There is a general concept in mathematics relating the time integral of two

variables cakd the Faltung Integral, Duhamel’s Integral, or the consolation integral, as

follows,

F3(t)= ; F1 (t – @ ZZ2(z) dz (53a)
o

where either way of handling the integral gives identical results. We also commonly call

this the superposition integral when handling well testing and aquifer flow problems.

The usual practical way of handling this integral for water influx is as follows.

(54a)

Normally the pressure history is not known analytically, and QD is in tabular form, so

this integral is handled numerically, as follows.

QD (tD ) = ~ [PD (tDi) ‘PD (tDi-1 )1QD (tDn ‘tDi) (54b)
i+

Notice in Eqs. 54a and 54b, that the indicies

terms in both the integral and the summation.

attempt to clarifj it graphically in Fig. 13.

on time are reversed on the pD and QD

This concept may be a bit confusing, so Ill
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‘t tD

Figure 13. Example pressure history.
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In this figure Ile graphed pressure, PD, against time, z , for a total time, tD

Notice that the early pressure drop is sm~ but it is felt for the entire time. This is

indicated in Eq. 54a as @D/ a~ when z is sm~ and the QD term is evaluated over

the entirehe, ~D– z. The same is true in Eq. 54b. The pressure drop is indicated at

tDi , with i sm~ and QD is evaluated at tDn – tDi , With i Sm~

As time goes on, the pressure continues to drop, but the effect of each drop is felt

for a shorter time. The pressure change is evaluated at this later time, z , and the

resulting QD k evaluated for a shorter time, tD – z. W this is quite logic~ and

behaves as one might instinctively envision. I should also add that it isnl necessary that

the pressures decrease with time. They can also increase, and the formal procedure will be

the same. Some influx terms will be negative, as a resul~ but if the overall pressure is

lower than the initial pressure, the summation will be positive, and correct.

To show how this is done in practice, I’ve made a similar graph in Fig. 14, page 66,

but here also divided it into discreet stairsteps as implied by Eq. 54b. We presume that

specilic data are available at specific times; pi at ~o, pl at zl, p2at ~2 and soon

to P6 at ~’; the final time, tD , when the total influx is to be evaluated.

To handle the summation of Eq. 54b, we first assume that over time, Z1- Z. , that

pressure actually dropped abruptly at time Z. to hwthe pressure drop [to. (Pi+P1)121. .
thatoccurredover the fist time period. This concept is continued over the rest of the

time periods in steps. From q to Z2 , we assume the pressure drops abruptly to

(pI+p2)/2 attime Z1 . This, too, is shownin Fig. 14. This second pressure drop is

assumed to kt hm ~1 @ total time,~D (or ~fj , h the dkhtion). Thissequence k
.

followed for the remainder of the time history.

Notice, in Eq. 54b, that it is the individual pressure drops that are included in the

summations, not the pressure levels themselves. So Apo is defied as follows,

(Pi ‘Pi) = Pi ‘P1APo=Pi _ a
2
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h ~. 54b, this pressure drop is evaluated for the entire time, t~ (or ~fj). For

Apl , the equation is,

Pi+Pl P1+P2 =Pi-P2
Apl =~i-~z ‘~-

2 2

This pressure drop lasts for time tD - ~1 . For Ap2 , the equation is,

pl+p2_p2+p3=pl–p3
Ap2=~2-~3= x

2 2

(56)

157)

Thk pressure drop h~ for time, tD ‘~2 . The rest of the Ap’s. follow the same logical

order as Eqs. 56 and 57.

Note the interesting concept that the actu~ Pn (PI, P2 etc.) for the P~c~

time step is not included when evaluating the effect of that pressure drop on that time

step. There is no theoretical logic for this strange behavio~ it merely falls out from the

procedure used to discretize this summation.

One other important item concerns the sizes of the time and pressure steps taken.

Notice in the illustration of Fig. 14,.that they were not equaL either in pressure drop or in

time step size. They don’t need to be. However, in practice, when evaluating a number of

water influx calculations with time, it is usually convenient to divide the calculations into

equal sized time steps. This procedure makes the table lookup and the calculationa.1

procedures more convenient to handle. Also, it seems wise here to point out that this

formal procedure is the same for any geometry and boundary condition.>

In Eq. 54a I’ve shown one form of the more commonly used water influx

superposition ktegral. Actually there are four different ways to write this equation. They

are,

w~)D = ‘f APD(@lD(~D ‘@dr
o

(58a)

(58b)
I

(58c)
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and

‘D dfipD (tD - @
~.)D = j

d(tD -T)
QD (~)d~ (58d)

If what I’ve said earlier is correct, all four of these equations should produce the

same result. To test this idea out, I’ve looked at the results using the following equation

forms for the variables.

dAPD (tD ‘~)
= h(tD - ~)

d(tD – @

We will evaluate (We)D (tD ) using these parameters, and all four equation forms, to test

whether all four equations give the same result.

Using Eq. 58% and substituting the definitions, we get,

m+2

[

121 1=mabtD —–— —
m m+l+m+2

~~)D =
2ab t&2

(m+l)(m+2)

By comparison, using Eq. 58b, and substituting the definitions, we get,
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Equation 60a is more easiIy solved if we were to change the variabks and integration

limits as follows,

call t~-~=y , dz=-dy

when ~=tD , y=O andwhen z=O , y=tD

So the equation becomes,

~~)D ‘- f a(tD-y)2~m-ldy
tD

But Eq. 60b is identical to Eq. 59a! So its solution is also the same,

~,)D =
2ab t~+2

(nz+l)(nz+2)

(60b)

(60c)

Next we!ll look at Eq. 58d. When we substitute the definitions for the pressure

derivative and cumulative water influx terms, we get,

(We)D = ‘~ 2a (tD-@ bzmdz (61a)
o

(61b)

Again, the result is identical to Eqs. 59b and 60c. Finally well look at Eq. 58c and

substitute the appropriate definitions. The result is,

@j)D‘t!2azb (tD-z) ‘ndz (62a)

As before, we’ll change variables and limits as follows,

Cau tD–~=Y > d~=–dy
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when z = tD , y=O , andwhen z=O , y=tD

And when these definitions are substituted into Eq. 60a, the result is,

(We)~ ‘- ; 2a(tD-y)@m@ (62b)
tD

and, as we might have predicted, Eq. 62b is identical to Eq. 6la thus its solution is the

same as the others.

~,)D =
2abt~G2

(rn+2)(m+l)
(62c)

These results are remarkable, but they have far greater implications than just for

this specific case. To make these calculations, I used a general power fimction, m , on

the QD term, and a power of 2.0 on the ApD term. I could have used any power I

wished on the ApD term, but chose to use 2.0 to simplify the algebra. For example,

suppose I had used an equation of the form,

ApD(z) = az3

for the pressure equation. Using this equation form, the resulting water influx equations

would all have resulted in the following solution,

(w~)D=
6abt~+3

(m+l) (m+ 2)(m+3)
(63)

I!ll not bother to show the algebraic details necessary to prove this statement. The

interested reader can prove it for himself.

Clearly then, if any power could be used on either term, then any function could be

used on either term, for any function can be put into an infinite power series. Thus we can

conclude that Eqs. 58a-d are always equal to each other for any superposition problem we

wish to solve. This is true for any geometry and any boundary conditions we wish to use.
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Normally we use Eq. 54a, which is the same as Eq. 58c, but sometimes one of the other

equation forms wdl be more convenient.

In brief, due to variations in both pressure and aqtier flow rate with time, some

superposition procedure must always be used in water influx calculations, as wel see in

later notes on application. This statement is true for whatever inner or outer boundary

conditions are applicable, and for whatever geometry is appropriate. Next, however, IU

discuss the linear aquifer solutions.

LinearGeometry

Thebehaviorof a linear aquifer is far simpler than that of a radial aqtier. The

mathematics of the problem were first published by Miller in 1962, but shortly after that a

quite elegant piece of work by Nabor and Barham (1964) presented the entire linear

aqtier equations and curves in a three-page paper in the Journal of Petroleum

Technology. The remarkable result of Nabor and Barham’s work was to show that all six

possible boundary conditions (Interior Boundary, constant pressure or constant rate;

Outer Boundary, closed, constant pressure or infinite), could be shown with only three

equations, or alternatively, three lines on a single graph. A copy of their paper is attached.

The reason for this behavior becomes obvious when one looks at their equations.

Their Eq. 1 shows the pressure drop for the infinite system with a constant rate inner

boundary, while their Eq. 4 shows the cumulative water influx for the infinite system with

a constant pressure inner boundary. Notice that the time relationship is the same for both

of them. It is,

Time Function = ~kt/z@z Ct

The careful reader will notice that this time fimction

(64)

isnot dimensionless as one

might have expected, but it is made dirnensioxilessin their Eqs. 9 and 12, and defied by

the general infinite acting fimction F-12(t~ ) as follows,

(65)
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CQNCLUSfONS. .

T& .2@3ati0nid2scnig linearaqnifcrbehaviormay be
red@e4 by a pqtiwlar dednition of dimensionless timq

“ b fi.working euryes I%e2e curves,are.appropriate for
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. mon .boti@y eonditiorn.
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of .eurk~ and thereby impmvrs the speed ~d aceoraey
“of .eakdadorls.

.Very simple iimidng fermi of the equatiops may be
Iused. in .pIar.e. of the working curves, at short times
. (f;< O.2S) and at Iong times (tB>U). “
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. .

where tD = ktf @LClL2

and L = any arbitrary distance, for the infinite system

Other comparisons are also interesting. I’ll address the dimensionless equations for

this purpose. Note in Nabor and Barharn’s Eq. 11, for the finite aquifer with the constant

pressure at the outer boundary at constant rate, the pressure drop behavior fits the

F“(t~ ) function.

constant pressure

~’ (tD) fiction.

In their Eq. 13, for the finite aquifer with a closed outer boundary and

inner boundary, the cumulative water influx solution uses the same

~O(tD)is defined in Eq. 15 by Nabor and Barham.

It is not too surprising that these two cases give the same result. For the pressure

drop case, their Eq. 11, after a period of time the pressure drop follows Darcy’s Law, and

becomes constant. For the water influx case, Eq. 13, the total water influx must be limited

to a finite value due to the sealed outer boundary. The dimensionless equations are defined

so that these constants are both equal to 1.00.

The F. (tD ) function can be expressed almost exactly using simple analytic

solutions. Remember earlier that I pointed out that the radial system exhibits exponential

decline once the outer boundary is felt. Actually, this behavior is generally found for any

bounded system, whatever its geometry. We can use this idea to test the data or Nabor

and Barharn’s F. (tD ) function. Using ideas similar to those in Eqs. 38c, d and e, we

would expect the tabulated data would be a straight line on semi-log paper. The table on

the following page lists their data horn 0.18 S tD <2.80, and evaluates 1- ~o (tD ) , as

suggested by the equation for exponential decline. The data are graphed in Fig. 15, page

77. These data veer away from the infinite acting dat~ but note the important concept

that the first data point in this table fits the infinite aquifer solution, Eq. 65. So these data

act in the same way as the radial data we discussed earlier. At early times they fit the

irdinite acting equation. Then they switch immediately to exponential decline at time,

tD =0.18, as Fig. 15 shows.
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Nabor and Barharn

Fo(tD ) Data for Exponential Decline Graph

tD

,,..,.,..,..,.#..,,,,,,,,,,,,,,,,,,,,,..,.,,H,.,,.
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0.45

0.50
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0.60

0.70
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0.90

1.00

1.10

1.25

1.40

1.60

1.80

2.00

2.25

2.50

2.80
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.........................................................
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0.94629
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0.97438
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0.99830
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l- Fo(tD)

................................................ ......

0.52154

0.49591

0.46586

0.43777

0.40639

0.37732

0.34181 ‘

~0.30212

0.26705

0.20605

0.20357

0.17555

0.14461

0.11260

0.08798

0.06874

0.05371

0.03710

0.02562

0.01564

0.00955

0.00583

0.00315

0.00170

0.00081
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As expected, the data in Fig. 15are a perfect straight line. So a simple equation

could be used to predict the cumulative inllux behavior with time. Since the pressure

behavior for constant rate with a constant pressure outer boundary fit the same curve, we

could also use this idea to predict the exponential pressure decline history for this case.

However, there is an even easier (but somewhat less accurate) way to handle this problem,

which I’lldiscuss next.

Notice in Nabor and Barharn’s Fig. 1 that, as a first approximation, the Fo(tD)

curve can be treated as two straight lines. At early time F. (tD ) is proportional to the

square root of tD and is equal to F112(tD ) . At late times it is 1.00. If we were to

ignore the curvature and treat it as two straight lines, breaking at tD = Z/ 4 = 0.785 , any

calculations of water influx would be greatly simpMied. An evaluation of this procedure

shows that the maximum error occurs at tD =0.785 and it is about 12% too high. This

concept was successfully used by Brigham and Neri (1979) and by Dee and Brigham

(1985) using superposition calculations to simplify predictions of two geothermal systems

which exhibited linear steam influx behavior.

The last two cikws which fit together are the pressure drop prediction for the case

with a constant rate and a seaIed outer boundary, and the water influx prediction for

constant pressure inner and outer boundaries. These both use the F1(tD) equation,

Nabor and Barham’s Eq. 17. This behavior is also logicaL With the closed outer

boundary, after a period of time the system will reach pseudo-steady state and the pressure

drop will become a linear function of time, just as it did for the radial system we discussed

at length earlier in these notes. While, with the constant pressure boundaries, after a

period of time the system reaches steady state and the cumulative water influx will rise

linearly with time, also following the Fl(t~) function.

Notice in their Eq. 17, that the long time result for the F-l(tD) function is,

F~(t~) =t~ +1/3 (66)
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(67)

This is the pseudo-steady state equation for linear systems,

kbhAp
=t~+l/3

qpL

where b = the width of the linear aqtier

h = the height of the linear aquifer

And now all the pressure, geometric and rate terms on the left-hand side of Eq. 67

constitute the definition for PD for linear systems.

Since a simplification of the FO(tD) curve worked we~ it seems logical that a

similar approach would work for the F1(tD ) curve. To test @ ide~ I compared

~l(tD ) for various times against the values of ~. 66 &d F’12(tD ) , ~. 65, as shown

on the following table.

Comparisons of Fl(tD) with Eq. 65 and Eq. 66

to Approximate F1(tD )

t~ Fl(tD ) Eq. 66 Eq. 66 Eq. 65 Eq. 65
tD +1/3 - Enor

F1/2 (tD ) Error
..............-...,,,..,,,.,,,.,,,..,,,#,,,,,.,,,,,.,............. ........... -..,...,e-,.,,,,,~,~,,,,,.m,m,.,..,,,,#,.,,,,,,,..,.. . .....f.>#...,,,,,,,..,,..,.,,,,””,,,,-.,,,,>>,,,s,,,,,,,,,

0.225 0.536 0.558 0.022 0.535 -0.001

0.25 0.566 0.583 0.017 0.564 -0.002

0.28 0.601 0.613 0.012 0.597 -0.004

0.31 0.634 0.643 0.009 0.628 -0.006

0.35 0.677 0.683 0.006 0.668 -0.009

0.40 0.729 0.733 0.004 0.714 -0.015

0.45 0.781 0.783 0.002 0.757 -0.024

0.50 0.832 0.833 0.001 0.798 -0.034

0.56 0.893 0.893 0.000 0.844 -0.049
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A comparison of the results in this table is similar to the behavior we saw earlier

when looldng at radial systems. At late time the pseudo-steady state assumption, Eq. 66,

is valid, while at early time the infinite-acting equation @q. 65) is valid. The cross-over

occurs at a time, t~ , between 0.31 and 0.35 with an error of about ~ 0.008 or only

about 1.4%. Clearly this procedure would simplify calculations one would need to make to

predict influx of linear aquifers.

Suuemosition of Linear Svstems

We’ve already discussed superposition in gener~ but let’s look at it in particular

for an infinite linear system. The reason is that we’Jl find that the integration can be

handled quite easily. In general the superposition integral can be written, as follows,

(58a)

For illustrative purposes let’s assume the following relationships for pressure drop

and cumulative water influx as functions of time,

ApD(r) = az2

ApD (tD–@ = a(tD-@2

(68a)

(68b)

(69a)

(69b)
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Equations 69a and 69b are Nabor and Barham’s analytic solution for QD (tD ) for

an irdiite linear system, while Eq. 68 is the arbitrary ApD (z) function I chose to

illustrate the behavior of the integrals. Substituting Eqs. 68b and 69b into Eq. 58% we

get,

+

312 2=5/2 tD
ab 2 ~lz 4tD ~ +

=— 2tD~ -
2 3 50

8abtD 512
~e)D = 15 (70b)

Alternatively we could look at this problem using Eq. 58d, as follows,

‘DdApD (tD –Z)
We)D = -~

d(tD –Z)
QD (@d~ (58d)

with the following definitions:

ApD (tD– r) = @tD-~)2 (68b)

Substituting Eq. 68c and 69a into Eq. 58d, we get

‘2aF-=1:
‘2abt~’2[2(5)ii2(8aY2
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(71a)

(71b)



Note that Eq. 71b is identical to Eq. 70b, just as we anticipated. Further it is clear

that if the pressure history can be put into any analytic form, the water influx history can

be easily calculated analytically. This concept bodes well for simplif@g water influx

calculations for linear systems.

Let us carry this idea fhrt.her, and consider the implications of the approximations

in the previous table on the F1 fimction (page 79) that tell us we can use the infinite acting

equation for early time da~ and the pseudo-steady state equation for later time data. To

do this we realize that at early times we get,

While for late time we get,

QD(z)=b(z+If3)

To solve our equation we will again assume that the pressure drop is a

quadratic,

APD(tD-T) = a(tD–@2

aApD(tD-z) = 2a(tD-r)

a(tD –O

The superposition equations we will use for comparison are,

and

@(e)D = ‘f’APD (tD-@ !lD(@~~
o

(65)

(66)

(68b). .

(68C)

(58d)

(58a)
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For this purpose we will break these integrals up into two time periods as indicated

by our geometry. A break occurs somewhere between z =0.31 and 0.35. Well look at

both times for a total time, tD , equal to an arbitrary value of 1.00. Ite chosen this rather

short total time purposely, for this will tend to exaggerate any differences due to the

equation approximations. Thus we will get four different results, that theoretically should

be identicd but which in practice we expect to differ slightly due to these approximations.

Looking at a break in time of tD =0.31 , and using the definitions for

3ApD (tD – Z) / 3(tD–@ and for QD(z) , Eq. 58d becomes,

0.314ab( tD -T)Z 112~z

(W.)D = j
&

+ ~ 2ab (~D – z) (z + 1/ 3) dz (’72a)
o 0.31

which, when evaluated, becomes.

~e)D = 0.62717 ab (72b)

Using Eq. 58a instead, and differentiating Eqs. 65 and 66 to evaluate gD (r) , we get,

2 ‘~/2d=
0“31 ab(tD –Z) T

~~)D = $
&

+ ~ ab(tD –Z)2 dz
o 0.31

(73a)

which, when evaluated, becomes,

~e)D = 0.62000ab . (73b)

Notice that these two differ by only 1.16%. This is certainly within the accuracy of any

field data one would normally find.

hstead if we were to break our time at tD = 0.35 , Eq. 72a wfi merely be

changed by the integration limits. The resulting answer is,

~e)D =0.62634ab
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Note that Eq. 74 is nearly identical to Eq. 72b. Similarly, if the integration switchover

time of 0.35 is used in Eq. 73% the result is,

~e)D =0.61970ab (75)

Again note that Eq. 75 is almost identical to Eq. 73b. So it is clear that it is not the switch

in integration crossover time that causes the slight differences, but rather the form of the

superposition equation used. But in any case, it is also clear that these simplifications are

quite adequate for the engineering accuracy required.

Spherical Geometry

As I mentioned earlier, the spherical geometry is not too commonly seen in water

influx problems; but it can arise whenever there is a small oil “bubble” surrounded at the

sides and bottom by a large aquifer. The enclosed paper by Chatas (1966) discusses the

solution for this equation. It is far longer than it needs to be, for it could have been

simplified in much the same way that Nabor and Barharn simplified the linear systems.

One important point in spherical flow is the fact that the vertical permeability, kv

is often far less than the horizontal permeability, kh . Chatas discusses this fact and his

Eq. 10 is supposed to give us. the correct value of average perineability, ~ to use when

these permeabilities dtier. This equation is wrong! The correct value for the average

permeability is,

~= ~~ kV)1/3 (76)

To derive this equation, I used the same scaling law ideas discussed in my notes on

infectivity (Brigham, 1985).

We also need to look at the transformed inner boundary that results from these

scaling laws. The z direction coordinate will be elongated as a result of this

transformation, while the x and y directions will be shrunk. As a result, the irmer sphere

will be changed into “rugby ball” shape, with the ball standing on its end, an
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Wsteady Spherical Flow in Petroleuin.kervoirs “”

&T, +TAS
AIWER AUE I

“ ABSTRACT
A dmcn>tionoft& .@sr*tw Cbawtsrfstics

ot spbehot stisetvofr systms, a &cKssfon 0[
~tMt@ttte //OW O! ticb Systenrs ,+ SSS@eS
of cngfneeving applications are pressnted &
kaekgmund.materfoL7’be @nAnnmtaldiffeum”d

“’squ~”ion, a desm@tfon o~ &ernge spben”qrl
penmability and tbe intmductipn of tbe Laploce
lrttnsfannation serve as tbeoreticdl fiwtdations
Engineming ,eticepts m inamstigated to indicate
Porticuhwsolutions of ititersst, wbicb ee ano.fyti.
COUYobtm”nedwith tbe aide{ tbe Lopittca trans~onm
These are numek%dly evafrmted by computer, and
presentad in tabrdar ~omt.

INTRODUCTION.

A mctabIe mdtematical anslysia of unsteady .

fluid flow through porous media gene@y tquires
incorporation z4f 8 geometrical symmetry. T@
8irnpIe8z forms include the Iinesr, cylindrical
(did) xd spherical. Most stmlytical endex~ars
have concemtrsted on cylidricd symmetry because

it ocqws more ofien in permkum .reservoirs.
Never@cless, same reset+ systems do ezist dmt
●e better approiinmm.d by spherical geometry.

Review of zechnieal lireraarre cev+led but ●

single reference co pns;eady spherical flow in
pe’ird~” reservoirs.s Tbe motive snd pufpase of
the ptesmr work wss to remove dds gap in technical
information, mid to provide the practic&rg eagineer
with some usetfrl analytical tools. ~e mdmmstical
&rsjIs associated with the psrricuIar solutions of
kicerest involved’ usc of the LspIace transfer-.
mation,. H~sr and” van Everdingen prevkdy

“demoosmsted the efficacy of &is operadonal
techaique, sttd in msny cespccrs dte pre?eat
rresrmerte ms patterned drer their eedier worb.2

PRELIMINARYCONSIDmlIONS

atmlEmttcAL”cW&TEmmS , . .

GeOmWtksUy, s spherksl ieservoir system is
defiied at any itmmnc of time by -O concentric

OrleladUaum?lptF9dwd h s0c18r>0tP0tr0ttl&a.&qmoti
dflte ~. 27, 19s5, RWJSK -Mse~~ d sp~ la~s ““ivt~
AwU 3, 10660

ktC?9ns88 $lVai * Cad at Pawr.
.

.’
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.hemis@eres whose physicsl properties of interest
w ottly with the did ~ce. Every physical
WPSMY ~. dws .testti=d so be a spsce function
of only one Vsrisbhi: the distsnee Aoog a rsdius
yector erns+ng” fibnr ~e-eenmr.

Such s ~sssm is composed of M cutsrr@tt
sod sn inner region, .sepsrarkd by ● defined inmmsl
boundary. The inner “re~ion simply esmnds inward
from this boundary, where-s the outer segion extends
outward from it “so so ezterrd boundary. The
position of ~e imemd boundary is presumed fized,
so rbsr rbe *ize of the inner region remains constant.
On the “other harr~ the position of the rztemal
boc@y at any giwxt instsqc of rime ia demrmined
by the distance into the system” chat s sensible
pressure reaction bas occurre& 7hus, the esternd
boundary may chbhge p6sirion widt time.

k initi~lly emerges from the inner region snd
●dqttees outward to irs u@nare position. men
dtk ultimate position coincides with a geometric
limit, the reservoir system ie said to be limited.
When ir coincides “wi& pointi subject to pressure
gradients ftkhest removed from the internal
bnunda~, yet short ofs geometric limit, dre system
is ssid cd be unlirnice~. & this investigation two
different boundary condkioos uc imposed st the
ultimate boundstics of limited systems. me first
rquires that no fluid flow occur sqoss rhis
boundsry; the second that the pressure remain
fizcd at this .bomdqy.~s

UN2TEADY-STATE FMW .

In, 8 strici sense vittuilIy alI flow #mnoment
8saoei# .Ah ti reservoir system sre unsteady.
state.The ctansient bebsvior of these phenonrena

requires sccouneitrg, however, only when time
must be introduced as an cxplia”t viriable. Other-
wise, stesdy-’smte rneclmpics may be’ ased.
Anslycicallyt stesdy.stare conditions ~evail
in ● reservdr systerh only over that ~“on of
its history when this zelation is satisfied:

***O.....:.......(1)
.

@t ‘co do this, a reservoir system must contain
ci~er ●n ideal flm.d, wbicb impjks s wishing
viscosity, or ad incompressible ffui~ which

. . . .-.. .- -. - ------- --------- “. --_--.-
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impIiex a vanisbin~ comprassiWiry; ur itmust ++
peessutes fixed with “time such that the time=
deritmive vanishes. Evidently, strict gteady.state
editions ate *ittdly “impossible co ,attain, since
these geovisions ●re abstractions @f,the mind ind
not properties of pbyttical systems. Froms. praeticd
standpoint, howqt, tbJs fact does. not”ezcJude
appJic@oo of .staady=state “mechanics, because in
many situations Eq., 1 is. cIoseIy approx~atedi$$

The significatit physicalptopq.ies that&termine

the eztent of transient behavkr in spherical .
Teservoir systems are mbibkedby tbe so-called”
raadjusunent time which is ●pproximated by:

These factors are th size “of the system, its
compressibility ●d its mobili~.. ~m they eorribine
to yieId ● Jsrgc readjustment time, unsteadywate
mechanics should be used unless pressures ate
invariant.=

ENGtNEERtNGAPP3JCATIOI?S

When s .waeer drive field @ charaet&ized by
bottom-water encrthcbment, the hy&ocktbon
accumuJa~on usuafJy fills only s portion of the
total thickness 6f the reservoir fordution and is
entirely underJsin by water. FJOWof wster into rhe
pay zone resu~s from ● gradual aqri uniform rise
of the underlying water.

Of particufat interest to the re,setvoir en@teer
are methods, formally independent of triaterial
balance principles, for’ determining tbe water
infhut into bottom-water tlrive fields. First, these
methods ●fford determination of a number of
reserv&t properties tfyough m analysis of tb~
past resetvoir history by an adjunctite use with
other Aations. SecondIy, by independently yielding
tbe tiatet influz .tbey pravirie means of predicting
future tes~ir petf6rmance. Many bottom.water
drive fields Iend themselves. to the imposition of
spherical Seometxy; h~ce, solutions of the funds.
mental ffow quations ●ppropriate to”this $ymmetty.
can be used to arraly$uily determirre ‘the water
iofk for this elms of reservoir.~~e

.Akbough many wells arc completed 8ft& tbe.tilll
has psased entirely through the-pay formation; some
are purposely cnmpIereddteron!y” partial penemtion
baa been effected. Somgtimes such wells ate
completed after the top surface of the reseivoir is
merely tapped by the drill, in which caae they use
termed aoa-penetrating weJls.

Nnn:penetrating wells rhat occur in s relatively
thick formation can be seated as spherical systems.

They can be srdytically investigated by using
●ppropriate soluticas of the fundamental flow
qmeions corresponding to sphericsJ symmeiry.
These investigations include flqw calcuhtions,
analysis of drawdown and build-p tests, determin.
●tion of static bottom.hole pressure, productivity
indices, ●ffective permesbiJities and evaluation of

dhagetf ●ad conditions.. AJso, alrhou~ the
amlyticd sohxions saictly apply ody to the
single-phase flow of compressible Jiquids, shetemJta
can sometimes be ased (with proper interpretation)
the flow of gases when pressure drops are smalI,
and to tbe simuhrteoua fJow “of oil and gas upon

imposit@O of dtastie ●ssumptions.3.4*7

THEORETICAL CONSIDERATIONS

FtJNDMRttTAL DWRUWNTML 2WJAT30H
Zlte .lbndatmntzl differential e&tion govenhg

the dynamics of the fJow of cnmptessible Jiquids
tbrouglt Spbstiid Ceservois Systetoa Can”be Wittm
Ss:

h“+z; ~=++......”.. (3)
dra ‘

.whre the porosity, compressibiky and mtobility
are interpreted ●s tied avezsges, .snd where the
effects of gravity are netlected. Define a dimen.
siomJess lend ratio, time zatio and pressurdrop
ratio, respectively, as foJJows:

r=~...~.... . . . . .. . . .D . . (4)
*W

k:. . . . . . . . . . . . . . .“2D= +P=r: (5)

Introduction of these *lations into Eq. 3 permits it
to be rewritten ●s”:

which zeptesents the fundamental differeotiaf
quation fn dinpsionle?s form ●ppropriate to
zesesvoit s stems ,c@racterized by qftericaf

?Symmetry.a” .8

AVERWE SPHERICAL PERMEhB13JlW

AvaiJable evidmce indicates that the permeability
of porous media constimting reservoir systems is
not isotsopic in character. AtI ● rule the vertical
petmeabiii~ is less tbnn the ItorizontaJ, and in
soqe instances the diffeteoce is profound. Since
sphericsJ symmetry embraces ● thtee.dinrmsionaf
geometric space, itwas feIt necessary en incJude
the effects of this anistropy here. The radiaJ perme-
ability in s zphericd porous. mediuni characterized
by uniform wertiml and horizonraf petmeabiJi~,
componmts can W soslytJcaJIy described by:

1~.-—.ginaa+——C052U. . , . . . . , (8)
k, &b k“

The •vers~ spheticd petmeaMli~ cm then be
obtained with tbe volume integral:
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, ● ..(9)

which, upm evaluation, gives:
. .

~ ~ !)kbkv‘-, . . . . . . ..O”.. .{lO)
4,+2kV

de avers~ spherical&meability.

APPL2CATX024OF%
LAPLACZ mFORwrXoN

‘fit tidamental differeariil quarion for 8
qhfficd MSetVOit systein “h8Sbum ●xpsessed in
dimensioa1e8sfonwby Eq. 7. De@4he product:.

b=rD #D . . . . . . . ...? . . ..(11)

Then 12q.7 Esn be wtiaen ia”rhe.akeirkhe for@t:

* ~b ,.

ar~ -q””””””””””””
. . (12;

The +sphce. transformof b iq given by the
definite mmgml:

Frn” $Wbexp(-stD)dtD . . . . . . . . . (13)
o

Mukipliemkn by the nucIeus of the &ansform ●nd
inmgration over .sI1 rime conv~,s Eq. 12 from a
partial to #re ordinary differential equstion:

dz~ -
=s b...... . . . . . . . . . (141

~

The ~encral solution of rbis subsidiary qustion
can be wrirren +Conce:

where ~ is S0 stbirrary Som&i.2B9-11
Particular sohteions to the subsidiary equ+n

correspondiis “to specifically. imposed boundary
conditions are obta”inedupon appropriate evaluation
of the constants rbsc sppesr @ iti general solution.
fiesc psr+ulsr so!urions wodd represent *e
Lap!ace transforms of the rquired parrkular
solutiotk to Eq. 12. The Iarter are determined by
effecting the inverse rxsrrsfoon+ions of “&eir Lapke
rranshms. ~i~ pmeedure will be used to develop
the pruticdar solurioim of inrerksr.

SELECTIONor PARmCUUR 20LUTIONS

Reduction of Eq. 3 to tie dimensionless form
depicred by Eq. 7 ws~ ,effecced, b&cauae the com-
plete dimensionlessrrkss of Eq. 7 rende,rs.rheaumer-
icsl dues associated with its Parricuhr solutions
entiely independmt of the. scrual tnagnirudes of
the pbysicsl properties .of any givti reservoir .

W4
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. .
syst~. But due-to the generality introdneeh it
@mr@ rre~ssary .s0 “.reJate - cer@n physical
@CS ●smciated. ~ith ●bsolute units of
meaauremknt to fcncriooa of the dimensionless
variab~s in Eq. 7.-

.3%s. macroscopic radial Wlociry St dte inretnal

%oudary of a s Ileri* mseHoir system is- ~verr
!by Dstsj% law. 4

Inrmdqerion ef the tdarions ~cfioed by Eqs. 4
drmugh 6 yiekls:

(0)& ..L. lip(rw $“9 p ** ***.. . (17)
Pw 1

which relates the skrusl..-lociry wi~ ~e dimen-
sionless function (dpD/drD)t. The iste of fluid
influx m the internal boundary is given by:3.4. .

. . . . . . . . . . . . . . .* . . m)
Then, intiadum”on.of Eqs. 4 through 6 yields:

whirh rekes the ●ctnal fluid infhix rxte with the
dimen8ionle$$ ~C.rion - (~~D/drp)l.

The cumulative fluid influx at rhe internal bound-
ary up to any rime t is @c.n Py:2

Skhilsrly, inaoducrioa of Eqs. 4 rhrou#r 6 yields:

which relstes the scrual cumulative fluid influx
with the fime integral of ihe dimensionless function
= (d#D/drO)l. Upon proper imerpremrion, ~qs. 1?,
~9 and 21 can ti used to determine the fluid flow
and @essure ~havior in s spherical reservoir
8ystem, srrd also to indicaie the appmpriare choice
of parriculsr solurions to Eq. 7. Two disrirrcc csses
eiiae: the so-called. ~eisure and ratecsses.2s5

Tbe ~ressruq Case

31te pressure csse ptcsuiaes knowledge of the
@essute conditions 8: the internal bauodery of s
ztiervoir Sy’arem-and permirs determination of the
‘fiid flow. behavior. Ccmsidcrs spherical rese~ir
systti characreiixed by dimmsionless pmperries.
Let rhis system be charged tos unit dimensionless
pressure, and st’ zero time lee the pressore sr the
int&nsl boundary vanish and remain zero. This

SOCtSTY 0? ?LTaOLSUN tlMINSXES 80 L18NAL

\



coadition represents the distincri*e femursof tbc
pressore we. Tbe “ptobleto”then rerosirts to
detemrimc he dimensionless SSICind auoufstive
hid infh ●t the iOtSXO~ fxn@sy ●S fUttCtiOitS

of dimettsicdesi time. %bis dimensionless de@p-
‘ tion of tire fhiid flow befwior snd its asns@ioo

ioco ●bsolute otrits of IEessurementcomstiortes the
PtessKreCSS8.2*S

Under &e precepts af the Pessore cue, the
dimco&icss41uM infk tste is Miiedby:

ad ritedimensio+ss mrndstive fluid iofks &r

FD-FDCI,@-- ~(*), “D. . . . . (23)

Symbolic+, tbe ●ctual veloeity, rste @d sumlrls-
uvc fluid infius msy now be espressed irt terms of
cD snd FD SS fOl~OWS:

r = r (@) - 2ff7 ~ St bw,o)●DWD).WP . (25)

F - F(r@ - 2n#crw3Ap(7u,0)FD (l,@. . (26)

Eqs. 24 through 26 ●spress tbe facets of fluid flow
behaviorin termsof field .dsrs and the dhensionless
functions eD sod FD. By ●pptiearion of the super-
position principle @uhsmel”s theorem) these
fiurctims cso siso be used to aeet tirne.vsrying
pressote histories.

me Rote C=e

IXe tste case presumes kpwIedge .of the fluid
flow cooditims -t the iotetn~ boundsry and permits
& remoinsti+ of the ptwssure behsvior. Consider a
dimensioa!ess mpbethf reservoir system cbsr~d
to a tutirdimensiooieio pressitre, snd.ftom sero@oe
-.wsrd lets omitdimeosiomlessfluid infhts tste be
fmpsed. II&s condirion,which espressed soslyti-
tsily u.

()-*=1, . . . . . . . . . .

arv ~ . . (27)

forA rime t~, represesq thedistioctie feamtre of
the rste use. The problemhere is to determioe the
dimensionless pressure drop distribution in the
system, sod dre ptessuie drop at rbe itrtetnsf
boumdsqunder rbe conditions prescribed. by Eq.
27. This dimensionless. desrriprion of pcessure
behmior ●nd its trsnrdstiori inro absolute units of
messwmnent constitutes the tsce csse.2~5

Under rhe precepts of the rste case, the ●etusl
peesscre disuihioo in tbe system is given by: --

Simiisrly, tbe wittd pressore at the internsl
bonodsq iwgiwo ~:

Tlteit 8ymbolic telstiogs *SS the presscte
.bebsviorin-s of field detsmrtdtbedimmsionless
forrctiott$,~ (t~, fD) sod PD(~, 2s). m~$e, by
8p@@on of tbe snperpesition principle, these
.~:~. 2s0 be used to uest time-vs.ryimg rste

DESCRXPZ20N OF PARTICULAR SOLUTIONS

By defimiti6ntbe esterqsl bounderyof so tmlimired
system eootimroosiy recedes &om the inteoml
boundsry withoot rncbitrgs geometric iimit. Under
rhese ermditirmsthe product rOpDvsnishes sod Eq.
15 becomes:

r=clq(-.to+). . . . . . . . . . .(30

The presepts of &e pressure csse requite thse
m &&nsiooless pressure drop of uni~ be resin.
tnined at the internal boumdety, and since the
Lspke ctsnsforin of uoity is 1/s, it follows tht:

%=~@-@(rD -l)] , . . . . . .(31)

which is tbe sobsidisry equstion ●ppropriate to
the ~ssrrre ssse for an unlimited system. The
dimensionless fluid iofins tste CD CMk rewritten
io -s of”b:

IlmrI “theLsplsee mertsfonmof eD, utilising Eqs.
31 -d 32, is:

6 -+++, . . . . . . . . . . . . (33)

whose inverse trsms&ms60a an be written ●t
once8s:

●D91+(~~d.-1/20 . . . . . . . . .. (34)

which is tbe dimensionless fiuid influs tste of
on unlimired system. 7%e Leolsce trsnsform of
F D (ditoeosioniesc cumukiv; fluid infl~) is .
.Siotply:

%->-+ +*, . . . . . . .. (35)
-.

whose herse trsnsfomrmtioo cso likewise be
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()&l/2* .,o, *.oe.a*(xj
F~mtDIF2 ~

c@#Mmt’Aw
%wbi@t is tbc @nsienIiss cum rke @id

LIfIox “of en unlimited system.% 11.13.14
llie pcecepcs of &e ‘tie cese require @et a

ditheosiottles$ rete of Unky be maintainedat **
inretnsl bounds!)%which Cxllbe m“trendo SelmSof “
&u: .,

.(*),:.(*+, :....@,
Using Eq. 30 Xcfollows rbse . . “

6=*V
[- ~(r~ - 1)] .

.*. WS“(l +<*) ‘ ““.”*

dicb is the eobsidisty *don .~ptiste to
the rste csse forBn uolimked system. The inverse”
Crsaxformarianis.awsikble from @mgrxl tmnsfotm
tebles. This result divided by .rDyields:

.whicb in “theditoensionIess prcssu@rop disaibu-
tion of ma oolimkcd system. Upon phciri$ rO at
tmity, Eq. $9 reduces to:

-WVpi = I -e~(tD)crfc(t#, . . . . . , .

4?- bsxtieifs%%”~
which is dte dim sionlett cseesute dmn atrhe
incemsl boundsry of so Unlitnite’d~$t~Z9.’u:i3t 14

At this jticmtd some si@ficuie. obx&s,rione
csn be msde: ‘First, tbe leeet uppei bound of the
dimcwsionlecs pressure dxopis uniry. Consequently,
uode~ the conditions of cormxnt mce tbe pressure
drOp St the ioremd boundsry . of en unlimited
spfterieal system cm oever exeeed s fixed finite
vslue. Second!y, tAe greetest lower bound of rbc
dinteneionless rete is IIS.Ounity. Heace, the rscc
engeacfcteii by ● siog!e prexsu~ drop imposed u
zeio time”m tbe intetrtel boundaryof so onlimired
spbericsl system CSD never bc less tbut s fixed
❑on-veniebio~ T8!UC. lo ●ither. ximscioa,, it appexrs
rbat so onlimked spftcricxl sesemoir system

spprmches stesdy.srsre conditions se dimeasioa!ess
time seeumes excesskely Isige. dues. This
pmpetsy, s~gely enough, is not enjoyed by
nolimimd Iioesr OIcylindric@ {rediel) systems.~s

LIJQIED-WITH
CLOSEDXXmRrUL BOUNDARY

b a Iimited reservoir system the exwrttsl
bouodsiy ewmoslly coiocidcs wi~ a geometric

Lo6

limit. Attie Jiroit#a Wgsrsm Wilb 8 closed prgmsl
bnundsiycsn suetsinnoQuidflo-aemss k Hence,

dte normsl preqsgre deriwck there ‘mustwsoish.
Introdum”on of dlk conditina iotc 4. 1s gins:

i “w)-’~:;~“Z. c sxp(q#)+

.. ...*.. . . . . . . . . ● . . .
Uoder the precepts of the ptsssnte .ex?e and by

“subsequent.cmversk tc-hgperboIic fWSCti&S. “G.
41 becomes: “

. ..*.... . . . . ....** . . (42)

*cb is the-subxid@ .qisrioo 8ppr&ixte to tbe
P@- csee fot ● closed ticed ~krem. The
Lsp!sce trsnsfono of ●. using Eqs. 32.snd 42. is:

. . ...*.. . . . . . . . . . . . (43)
me idverse rrsnsfomtation of the zelstion mxy bc
obrsined wirftthe eid of Mellin’s idwrsioa theorem,
snd is giwen by &e followibg integrxl m die
complex plzoe: .

1 Iim *“S●D ---
21?Z ?’- Ji84%)% ff= ● . . (44)

which for the function at bend m-y be evslusted by
converting 3Cm a closed Conmgrintegrsl sad dteo .
●pplying tbe tilculus of residues. Zbus, by virme
of ~ucby’s inte@ formufs:

- %+*:1%, .(45) ~

where R. is the m.sidue corresponding co the
singularity y rbe . origin sod R* die residues
.~orz.sspondiagto the other singulsr points. Evehs-
rmn of EQ.45 yie~ds the dimensionless.fluid influx
iste, ‘for ‘a closed limited ephericsl system, ss
follows:

. . . . . . . . . . . . . . . . . . : (46/
“wfiere w~ em the roots of the equxrion:

“TheLeplace trsnsform of FD is: ,*

SOC:X?? OT ?ZTROLXUK2NOXNZXM JOUXXAL
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{4D~lkeArfiD~l)+bD~lh@@(~:l)
= S?[*?D’COS19 @(few.+h @tD%l)l

. ..*... . . . . . . . . . . . . (48)

By rime of pzqloee uguqieacs, the in-se
usnsfoansiion of Eq. 46 yiefds & dimnsiailess
uxanl@e ~uid infhas fb:.a closed kited systecK

. . . . . . . .. . . .. . . . . . . . . . (49)

tiers w, s2* *O the roots of Z+ 47.a*WllO~”;S

Under che pecepts of the rs& case, E+ 41
*SCOMSS,upoo cooversioa 20byp&tMic fuoctions:

F= “
@D”COd@ (&&sinhm6;_D)

. .
s[~~D”-l~sh~AD~,?)+ (aOO-lkd~s(rD~l)] ‘

. . . .. . . . . . . ● . . . . . . . . . (so)
whi* ie AC +idiszy ●qrmtiooappropriate to the

. sue. tie for 8 closed limited system. 4i3 before,
the iovewe 22elufonos2iDoof Eq. 50 is Bi- by the
sum Of &e SCSidUeS,mnd SkCe 6 is r#D, thexs
follws:

TASLE 1 _ UNLIMITED CY6Tti

0.001 9ea4124
A . . . . .

0.03471
0.W2
0.003
0404
&oos
0.036
0.007

0.008

0.009

0.o1

0.02

0.03

0.04

0.05

0.06

0.07

0.09
O.w

0.10

0.20

OaO

0.40

aw
MO

0470

Oao

ato

Lo

Zo

2.0

40
.%0
&o.
7.0
6!0
9.0

10.0
2ao
304

40.0

5ao

12.61S66,

IL20065
9.93062

a,w4&l

9.24264
7.74336

?.20162

6,94304
6.64190

498942

4.2s725

3X209S

2s213

3.s329 -

3wn244

ZW471
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2764:2

2.26157
2.02C06
1.99206
W9766
W2827
1,676W
1.62074
14s471
IC2441W
~m4
142274
W2W9
1035221 “
102W3
h21s26
1*1W47

1,15(M
L171141
1.12616
1.102OI

1.02921
L07979

Ww

0.05244
0.06440
0.07s34
&06479
O’wyo
0.10141
0.10893
0.I14Q6
o.13364
0.179s8
a23544

a2bM

0.30221

a32440

0?34354
&3991s
0.42931
a45423
&7044a

a9 1604

L11365

3.29760

147404

1.@7

1920925

Lwo47
212620

305m

4WW441
U5676

7A22;3

207439s

9.-1

11.19154

12.39514
13.34s25

2500447A
36.16039
&7. I*O

37.972s5

0.04953

0.0SS92

0.06755

ao7504
0.0J174

0.08702

0.W243
0.09142

0.10354

&141S2

0.14494

0.19W8

0=62

0.22S30

a34026

&2W5
0.26540
%27442
0.35421
0140798
0.44439
&47464
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a63220
O&lx

a37242
0.64330
&71244
o#7446a
0.76745
0.76534
0.79944
aellw

0.82024

0J2937

0.87624
0.99770

0.91060

o.9i942

60.0
70s0
$0.0
90.0

100.0

*.O

300.0
400.0

6u&o

40000

700.0

200.0

900.0

I,ooao

aoho
S,ooao

406ao
s.ooao
6,W0

7.000;O “

6@0*o
9,W0,0

30,00000
a,oao
20,00ao
a,ooao
So,wao
Ao,owbo

70,wao

eo.ooao
90,00Q.O

100,OCGO

Zoo,wao
300,000.O
6oo,ooao
Soo,ooao
6W,000.O
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Sw,ooao
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I,ow,ooo.o

1.W264

1.04743

Lo6mB

L05947

1005642
L05989

1002257

1D02421
%02523

L02303

1.02132

L01995

L$1991

.1,0)764

1s1262

loolwo
1.00692

1.00W3
1.00729

1.24674

MOMl
LW39S
Mo564

140399

1000q6
Lwm2
t&252

*O
t.w213
1.00199
3M166
Loo172

LOO126
UO1O3
Lww
Low40
MW72
Looo47
1.c0043
l@059
LOW66

6k7

79.4

90.1
1W.7

11 Lo

216.0

330.0

422.0

S23.O

62t0

no~
832.0
9240

1426!0
2020.0

3,062+0

4,07L0

S,080.O

6,087.0

7,0940

8,101.0

%107.0
!0,1 n$o

20,16ao
20,19s0

60/22400
W,%%O
40,276.0
70,299.0
W,319.O

90,22900
1W,25Z0

300,50s0
300,61&0
M0,714.O

500,7W.O
6W,874.O
700,944.0
601,009.0
901;070.0

1,W1,134.O

0,9359s

0.93103

0.93512

0.92251

o.94n9
0.9s703

O.wae

0.96825

0.97131

0.97232

0.97526

0.97446

0.W767

0.97238
0.90453

a94714

0.96474

a92934
0.99067

0.99132

0.W165

0.W239
0.99267

0.W473
0.99564

0.99622
0.99462
0.W490

0899713
O.wnl
0.99744
0.99759

0099239

RR “

009?391
0.99900
0.99906

. 0.99914
009991?
M9932 =

92



“[*=o+’’a+a-%
x

‘mj=a VD’= w!+ tf’#ti)SbJW,) “‘
.. -0-.... .. *.*..* .,. . . (n)

.
Ctllw 1

w -X *”.” “ “
. . . ..(s2)

The espzessioe “Embodied~ Eq. S1 qresems
&e dimensionless ~ssutedrop distribmioo for a
closed Iiiited. spherlcsl syqwm. Upon placing rD
at dry and simplifying, there.folfows at, once. the
*easiodesspes~**opar*e &tm”dti*:

PD=

[
- -+(rD’-i)2 +- (rD’-1)2+

W“ztD

~=-(~
. . . . . . . . . . . . . . (33)

whereW- ere ●ill rbe coots bf E+ 32.

LumzD 2YSTM
mm CPM ExInNAL BounDARY

It ,will be recs’lled diet s @ted tes-ir
system is cbsrictetized by. de aresuneot of
growth of “the ●sternal bowxfsrp wbeo &e @tter
coiocideo with the ~eooietric limit of the Sycteak
Foe the csse of an opeo bo@ev it is ~esnmed
tbst me tie limit (rfjj tie sjstem suffers 00
PKSSUte dtOp. &UOdIIctiOO.Of tbiS SOditiOO itlto
Eq. 15 gites: “

whi&b isthe subeidisry equmioo sppiopdtte to tbe
pressw cese foz es open limited *stem. 2he
Lepke rtsosformof ●D usiog Sq. 5S, is:

The &rse htsfooasdoa is wsileble frmnintegrsl
teblesiotbefomu -

--’4[$1-1”“““(n)‘o-1+(f~”-l)

end qoa espeodittg .@eThem function this becomes:

?D”
eD=—

- 5+%W(”)
+2?*’-1 I“ -1 U-1

.

wkich is ~e dimensionless re~e for so open kited
system. As before, rhe Laplsce trsesforms of FD is:

“;D’”1 cosh @(rO’- 1)
, . (59). ‘% - ~ “ ~ + SW [Aoh@(rDO-l)]

whose.iamxsc rmosformstioa wss obmined with the
aid o.fthe Falmng condxion rbeorem u:

the dimensionless cumwlssive. fluid iofk foren
ox Jiraiccdsystem.9-ll,U-m

Under ‘die precepts of die rsce csse, Eq. S4
becomes:

wbicb is zbesubsidiary quscioa spp.mp&aeeto ~e
rete case for a limited eyscem withs fised pressure
it tbe ●xt,ereil bonodety. The iovegse txessfonmtion
of 2q. 61 .wse sgaio ebmioed by MeIKn’sinversion
theoielrt, cs previously *Splsioed. Thus, the
pre-sure-dmp distribution is giwo by: .

la’ Socurx or ?,smoislltl Sttclmsss JOUM4Z ~.
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ellipsoid. The equivalent inner radius of this “rugby ball” will depend on the

dimensionless time. At early time, it will be a fimction of its surface ar~ just as it is for

all other geometries, while at later times it will depend on the equiwdent flow resistance of

an ellipsoid. To the best of my knowledge, these equations have not been worked out for

this geometry.

Chatas’ solutions are listed in voluminous tables. Some of the nomenclature in his

tables is different than we now use. His rate of influx is labeled, eD , whalewe now use

@ (~D) . His cumulative influx is labeled FD , while we now use QD(ID) . In his

table for the infinite system, he lists e~, which is qD (tD ) , F“, which is QD(tD ) , and

PD. He shows that there are simple equations for these terms. They are,

~D(~D) = 1+ (fitD)-1i2 (77)

QDOD) = ~D +Q(~D /Z)l’2 (78)

and

()PD(tD) =}–exp (tD)e@ t&’2 (79)

So it really wasn’t necessary to list these values. Equations 77 and 78 are very

easy to evaluate. Equation 79, the most complex one, can be evaluated using various

simple closed form approximations which are valid at various times, and which are listed

in Abramowitz and Stegun’s book (1964).

Chatas also lists results for finite systems with closed exterior boundaries in his

Table 2, and constant pressure exterior boundaries in Table 3. Based on the work we

have done for the linear and radial systems, we would expect that these tables could also

be handled with simple analytic solutions. For example, in his Table 2, the closed

boundary influx rates and cumulative influxes follow the exponential decline equation.

While at constant rate the pressure drop increases linearly with time, according to material

balance principles. His Table 3 lists the results for the constant pressure external

boundary. Those, too, behave as we would anticipate, obeying Darcy’s Law at kite times.

I am positive that it would be possible to develop simple appropriate equations to

handle these closed systems, just as we did for the linear and radial cases. However, I am
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not going to do this, for I’ve seldom seen field cases where the spherical geometry is

required. If any reader does run into this geometry, it would be wise to spend the time

needed to develop the appropriate approximate equations for his system, for this effort

would greatly simplify his resulting calculational procedures.

Conclusions

WeWeseen that the results of all three geometies (linear, radial and spherical) can

be put into simple approximately exact equation forms. These equation forms are all

logic~ based on an analysis of the physics of flow in the systems. Thus for all the

possible inner and outer boundary conditions (Inner Bound~, constant rate or constant

pressure Outer Bound~, infinite, constant pressure or closed) the solutions all behave in

a logical manner.

The linear and spherical systems behave in similar ways. The reason is that the

spherical equation can be transformed into a di&erential equation form that is identical to

the linear system. A new variable, bD -, which is defined as follows, bD = rDPD ,

changes the spherical differential equation into the same format as the linear equation. As

a result both geometries show a square root of time relationship for the inli.nite system for

predicting cumulative encroachment with time. For the linear system, the pressure

prediction is also proportional to the square root of time. While for the spherical system,

the equation is slightly more complex, but still simple.

For the infinite radial systems, the very early time data also follow square root of

time behavior. For a limited time, simple empirical extensions of this idea are valid for

either the constant pressure or conitant flow rate inner boundary.

The very long time behavior of the infinite radial systems are also logic~ being

functions of the logarithm of time. Simple empirical adjustments to these late time results

are shown for both the constant pressure and constant flow rate inner boundary.

For all the finite systems, either a constant pressure or a closed outer boundary can

be assumed. The early time data for these systems all follow the infinite curves. It’s
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possible to defie simple equations for the times when this short time behavior is no longer

valid. As might be expected, these equations are fi,mctionsof the sizes of the systems.

Once the outer boundary begins to be felt, the equations, for all practical purposes,

jump immediately to the long time form expected for that geometry and boundary

condition. For example, for a constant pressure inner and outer boundary, the cumulative

influx varies linearly with time, following the steady state Darcy equation. Similarly, for

the constant rate inner boundary and a closed outer boundary, the pseudosteady state

equations define the linear pressure decline behavior. These statements are true for all

three geometries.

By comparison, for a constant rate inner boundary and constant pressure outer

boundary, exponential decline behavior is seen. The pressure history is a logarithmic

function of dimensiordess time. At iniinite time the pressure drop is constant, fitting

Darcy’s Law. Thus on the logarithmic coordinate we graph, PD (00)- PD (tD ) , to

depict this exponential behavior.

Similarly, for the constant pressure inner boundary and the closed outer boundary,

we also see exponential behavior. This, too, has a limit at infinite time, QD (~) , which is

defined by the geometry. The variable graphed on the arithmetic coordinate is again the

dimensionless time, while the logarithmic coordinator is QD(oo)-QD(tD) .

Thus we’ve seen that the exact infinite series solutions can be transformed into very

accurate closed form approximations which make calculations much easier, and which also

give great insight into the behavior of the various solutions. We’ve also seen that

superposition is an important way of handling real data which vary both in pressure and

flow rate with time. Many times, the approximate equations can

simplify the superposition calculations. Further notes on this subject

relate these ideas to reservoirhquifer combinations, the ultimate

engineering applications.

be used to greatly

will discuss how to

goal for reservoir
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